Refine Your Search

Search Results

Author:
Technical Paper

Capturing Combustion Chemistry of Carbon-Neutral Transportation Fuels with a Library of Model Fuels

2023-09-29
2023-32-0001
Carbon-neutral (CN) fuels will be part of the solution to reducing global warming effects of the transportation sector, along with electrification. CN fuels such as hydrogen, ammonia, biofuels, and e-fuels can play a primary role in some segments (aviation, shipping, heavy-duty road vehicles) and a secondary role in others (light-duty road vehicles). The composition and properties of these fuels vary substantially from existing fossil fuels. Fuel effects on performance and emissions are complex, especially when these fuels are blended with fossil fuels. Predictively modeling the combustion of these fuels in engine and combustor CFD simulations requires accurate representation of the fuel blends. We discuss a methodology for matching the targeted fuel properties of specific CN fuels, using a blend of surrogate fuel components, to form a fuel model that can accurately capture fuel effects in an engine simulation.
Technical Paper

An Automated Workflow for Efficient Conjugate Heat Transfer Analysis of a Diesel Engine

2021-04-06
2021-01-0402
The internal combustion engine’s performance is affected by in-cylinder combustion processes and heat transfer rates through the combustion chamber walls. Hot spots may affect the reliability and durability of the engine components. Design of efficient and effective coolant systems requires accurate accounting of the heat fluxes into and out of the solid parts during the engine operation. The need to assess the engine’s performance early in the design process has motivated the use of a computational approach to predict such data. A more accurate representation of the engine’s operation is obtained by coupling the thermal, flow, and combustion analysis of the various components, such as the combustion chamber, ports, engine block, and its cooling system. Typically, a stand-alone CFD simulation does not capture the complex nature of the problem, and the manual transfer of data between multiple analyses may lead to an onerous or error-prone workflow requiring multiple user interventions.
Technical Paper

Predicting the Combustion Behavior in a Small-Bore Diesel Engine

2021-04-06
2021-01-0508
Accurate modeling of the characteristics of diesel-engine combustion leads to more efficient design. Accurate modeling in turn depends on correctly capturing spray dynamics, turbulence, and fuel chemistry. This work presents a computational fluid dynamics (CFD) investigation of a well characterized small-bore direct injection diesel engine at Sandia National Laboratories’ Combustion Research Facility. The engine has been studied for two piston-bowls geometries and various injection timings. Simulation of these conditions test the predictive capabilities of our approach to diesel engine modeling using Ansys Forte. An experimental database covering a wide range of operating conditions is provided by the Engine Combustion Network for this engine, which is used to validate our modeling approach. Automatic and solution-adaptive meshing is used, and the recommended settings are discussed.
Technical Paper

Validation Studies of a Detailed Soot Chemistry for Gasoline and Diesel Engines

2021-04-06
2021-01-0618
Accurately predicting the evolution of soot mass and soot particle numbers under engine conditions is critical to advanced engine design. A detailed soot-chemistry model that can capture soot under gasoline and diesel conditions without tuning is necessary for such predictions. Building confidence in the predictive usage of the chemistry in engine simulations requires validating the soot kinetics over a wide range of operating conditions and fuels, using data from different experimental techniques, and using sources from laboratory flames to engines. This validation study focuses on a soot-chemistry model that considers multiple nucleation, growth, and oxidation reaction pathways. It involves 14 gas-phase precursors and considers the effect of different soot-particle surface sites.
Technical Paper

Numerical Modeling of Spray Formation under Flash-boiling Conditions

2020-04-14
2020-01-0328
Flash boiling occurs in sprays when the ambient gas pressure is lower than the saturation pressure of the injected fuel. In the present work, a numerical study was conducted to investigate solid-cone spray behaviors under various flash-boiling conditions. A new spray cone angle correlation that is a function of injection parameters was developed and used for spray initialization at the nozzle exit to capture plume interactions and the global spray shape. The spray-breakup regime control was adjusted to enable catastrophic droplet breakup, characterized by Rayleigh-Taylor (RT) breakup, near the nozzle exit. The model was validated against experimental spray data from five different injectors, including both multi-hole and single-hole injectors, with injection pressure varying from 100 to 200 bar.
Technical Paper

Impact of Aromatics on Engine Performance

2019-04-02
2019-01-0948
Aromatics constitute a significant portion of refinery fuels. Characterizing the impact of various aromatic components on combustion and emissions facilitates formulation of surrogate fuels for engine simulations. The impact of blending aromatics in fuel surrogates is usually nonlinear for ignition characteristics responsible for knocking in spark engines and for combustion phasing in diesel engines. In this work, we have characterized the behavior of nine aromatics components under engine-relevant conditions. A self-consistent and validated detailed kinetics mechanism has been developed for gasoline and diesel surrogates that contains toluene, ethylbenzene, n-propylbenzene, n-butylbenzene, isomers of xylene, 1,2,4-trimethylbenzene, and 1-methylnaphthalene. Numerical experiments using 0-D and 1-D models have been performed to study the relative behavior of these aromatics for different reacting conditions.
Technical Paper

The Computational Cost and Accuracy of Spray Droplet Collision Models

2019-04-02
2019-01-0279
This study focuses on Lagrangian spray models that are commonly used in engine CFD simulations. In modeling sprays, droplet collision is one of the physical phenomena that must be accounted for. There are two main parts of droplet collision models for sprays - detecting colliding pairs of droplets and predicting the outcomes of these collisions. For the first part, we focus on the efficiency of the algorithm. We present an implementation of the arbitrary adaptive collision mesh model of Hou and Schmidt [1], and examine its efficiency in dealing with large simulations. Through theoretical analysis and numerical tests, we show that the computational cost of this model scales pseudo-linearly with respect to the number of parcels in the sprays. Regarding the second part, we examine the variations in existing phenomenological models used for predicting binary droplet collision outcomes. A quantitative accuracy metric is used to evaluate the models with respect to the experimental data set.
Technical Paper

Large-Eddy Simulation and Analysis of Turbulent Flows in a Motored Spark-Ignition Engine

2018-04-03
2018-01-0202
Advanced research in Spark-ignition (SI) engines has been focused on dilute-combustion concepts. For example, exhaust-gas recirculation is used to lower both fuel consumption and pollutant emissions while maintaining or enhancing engine performance, durability and reliability. These advancements achieve higher engine efficiency but may deteriorate combustion stability. One symptom of instability is a large cycle-to-cycle variation (CCV) in the in-cylinder flow and combustion metrics. Large-eddy simulation (LES) is a computational fluid dynamics (CFD) method that may be used to quantify CCV through numerical prediction of the turbulent flow and combustion processes in the engine over many engine cycles. In this study, we focus on evaluating the capability of LES to predict the in-cylinder flows and gas exchange processes in a motored SI engine installed with a transparent combustion chamber (TCC), comparing with recently published data.
Technical Paper

CFD Modelling of the Effects of Exhaust Gas Recirculation (EGR) and Injection Timing on Diesel Combustion and Emissions

2017-03-28
2017-01-0574
Emissions from Diesel engines have been a major concern for many years, particularly with regards to the impact of NOx and particulate matter on human health. Exhaust gas re-circulation (EGR) is a widely used method in diesel engines for controlling NOx production. While EGR rates can be varied to ensure engine performance and reduce NOx emissions, EGR also influences the ignition delay, reduces the peak combustion temperature and increases particulate emissions. Moreover, the injection timing directly affects NOx and particulate emissions under the broad and highly variable operating conditions. An effective CFD-based design tool for diesel engines must therefore include robust and accurate predictive capabilities for combustion and pollutant formation, to address the complex design tradeoffs. The objective of the present study is to evaluate CFD modeling of diesel engine combustion and emissions for various combinations of EGR rates and injection timings.
Technical Paper

Evaluation and Validation of Large-Eddy-Simulation (LES) for Gas Jet and Sprays

2017-03-28
2017-01-0844
Large-eddy simulation (LES) is a useful approach for the simulation of turbulent flow and combustion processes in internal combustion engines. This study employs the ANSYS Forte CFD package and explores several key and fundamental components of LES, namely, the subgrid-scale (SGS) turbulence models, the numerical schemes used to discretize the transport equations, and the computational mesh. The SGS turbulence models considered include the classic Smagorinsky model and a dynamic structure model. Two numerical schemes for momentum convection, quasi-second-order upwind (QSOU) and central difference (CD), were evaluated. The effects of different computational mesh sizes controlled by both fixed mesh refinement and a solution-adaptive mesh-refinement approach were studied and compared. The LES models are evaluated and validated against several flow configurations that are critical to engine flows, in particular, to fuel injection processes.
Technical Paper

Accurate and Dynamic Accounting of Fuel Composition in Flame Propagation During Engine Simulations

2016-04-05
2016-01-0597
A methodology has been implemented to calculate local turbulent flame speeds for spark ignition engines accurately and on-the-fly in 3-D CFD modeling. The approach dynamically captures fuel effects, based on detailed chemistry calculations of laminar flame speeds. Accurately modeling flame propagation is critical to predicting heat release rates and emissions. Fuels used in spark ignition engines are increasingly complex, which necessitates the use of multi-component fuels or fuel surrogates for predictive simulation. Flame speeds of the individual components in these multi-component fuels may vary substantially, making it difficult to define flame speed values, especially for stratified mixtures. In addition to fuel effects, a wide range of local conditions of temperature, pressure, equivalence ratio and EGR are expected in spark ignition engines.
Technical Paper

CFD Modeling of Spark Ignited Gasoline Engines- Part 1: Modeling the Engine under Motored and Premixed-Charge Combustion Mode

2016-04-05
2016-01-0591
One of the best tools to explore complicated in-cylinder physics is computational fluid dynamics (CFD). In order to assess the accuracy and reliability of the CFD simulations, it is critical to perform validation studies over different engine operating conditions. Simulation-based design of SI engines requires predictive capabilities, where results do not need to be tuned for each operating condition. This requires the models adopted to simulate their respective engine physics to be reliable under a broad range of conditions. A detailed set of experimental data was obtained to validate the CFD predictions of SI engine combustion.
Technical Paper

CFD Modeling of Spark Ignited Gasoline Engines- Part 2: Modeling the Engine in Direct Injection Mode along with Spray Validation

2016-04-05
2016-01-0579
Gasoline Direct Injection (GDI) is a key technology in the automotive industry for improving fuel economy and performance of gasoline internal combustion engines. GDI engine performance and emission characteristics are mainly determined by the complex interaction of in-cylinder flow, mixture formation and subsequent combustion processes. In a GDI engine, mixture formation depends on spray characteristics. Spray evolution and mixture formation is critical to GDI engine operation. In this work, a multi-component surrogate fuel blend was used to represent the chemical and physical properties of the gasoline employed in the experimental engine tests. Multi-component spray models were also validated in this study against experimental spray injection measurements in a chamber. The spray-chamber data include spray-penetration lengths, transient spray velocities and droplet Sauter mean diameter (SMD) at different axial and radial distances from the spray tip, obtained using a PDPA system.
Technical Paper

Predictive Combustion and Emissions Simulations for a High Performance Diesel Engine Using a Detailed Fuel Combustion Model

2014-10-13
2014-01-2570
An important goal for CFD simulation in engine design is to be able to predict the combustion behavior as operating conditions are varied and as hardware is modified. Such predictive capability allows virtual prototyping and optimization of design parameters. For low-temperature combustion conditions, such as with high rates of exhaust-gas recirculation, reliable and accurate predictions have been elusive. Soot has been particularly difficult to predict, due to the dependence of soot formation on the fuel composition and the kinetics detail of the fuel combustion. Soot evolution in diesel engines is impacted by fuel and chemistry effects, as well as by spray dynamics and turbulence. In this work, we present a systematic approach to accurately simulate combustion and emissions in a high-performance BMW diesel engine. This approach has been tested and validated against experimental data for a wide range of operating conditions.
Technical Paper

Simulation and Analysis of In-Cylinder Soot Formation in a Gasoline Direct-Injection Engine Using a Detailed Reaction Mechanism

2014-04-01
2014-01-1135
3-D Computational Fluid Dynamics (CFD) simulations have been performed using a detailed reaction mechanism to capture the combustion and emissions behavior of an IFP Energies nouvelles optical gasoline direct injection engine. Simulation results for in-cylinder soot volume fraction have been compared to experimental data provided by Pires da Cruz et al. [1] The engine was operated at low-load and tests were performed with parametric variations of the operating conditions including fuel injection timing, inlet temperature, and addition of fuel in the intake port. Full cycle simulations were performed including intake and exhaust ports, valve and piston motion. A Cartesian mesh was generated using automatic mesh generation in the FORTÉ CFD software. For the simulations, a 7-component surrogate blend was used to represent the chemical and physical properties of the European gasoline used in the engine tests.
Journal Article

Simulation and Analysis of In-Cylinder Soot Formation in a Low Temperature Combustion Diesel Engine Using a Detailed Reaction Mechanism

2013-04-08
2013-01-1565
3-D Computational Fluid Dynamics (CFD) simulations have been performed using a detailed reaction mechanism to capture the combustion and emissions behavior of an IFP Energies Nouvelles optical diesel engine. Simulation results for in-cylinder soot volume fraction (SVF) have been compared to experimental data reported by Pires da Cruz et al., for the engine operating in low-temperature combustion (LTC) mode with high EGR, and for varied operating conditions. For the simulations, a 4-component surrogate blend containing n-hexadecane, heptamethylnonane, 1-methylnaphthalene, and decalin was used to represents the chemical and physical properties of the standard European diesel used in the engine tests. A validated detailed surrogate mechanism containing 392 species and 2579 reactions was employed to model the chemistry of fuel combustion and emissions.
Technical Paper

Ignition Quality Tester Guided Improvements to Reaction Mechanisms for n-Alkanes: n-Heptane to n-Hexadecane

2012-04-16
2012-01-0149
While most published detailed reaction mechanisms for n-alkanes have been validated against shock-tube data that use pre-vaporized fuels, they have not been tested extensively using engine conditions. This is partly due to the complications of the effects of both spray and evaporation on ignition and on the gas-phase kinetics. In this study, CFD simulations of Ignition Quality Tests (IQT™) are used as a tool to validate the detailed reaction mechanisms, supplementing other validation tests that use more fundamental shock-tube data. The Ignition Quality Tester is a new ASTM standard for measuring the Cetane Number (CN) of fuels. Shock-tube data in the literature are limited for heavy n-alkanes of interest for engine fuels, which make CN data valuable for mechanism validation. The IQT employs a stationary combustion chamber that involves spray evaporation and mixing followed by combustion.
Technical Paper

3D CFD Modeling of a Biodiesel-Fueled Diesel Engine Based on a Detailed Chemical Mechanism

2012-04-16
2012-01-0151
A detailed reaction mechanism for the combustion of biodiesel fuels has recently been developed by Westbrook and co-workers. This detailed mechanism involves 5037 species and 19990 reactions, which prohibits its direct use in computational fluid dynamic (CFD) applications. In the present work, various mechanism reduction methods included in the Reaction Workbench software were used to derive a semi-detailed biodiesel combustion mechanism, while maintaining the accuracy of the master mechanism for a desired set of engine conditions. The reduced combustion mechanism for a five-component biodiesel fuel was employed in the FORTÉ CFD simulation package to take advantage of advanced chemistry solver methodologies and advanced spray models. Simulations were performed for a Volvo D12C heavy diesel engine fueled by RME fuel using a 72° sector mesh. Predictions were validated against measured in-cylinder parameters and exhaust emission concentrations.
Journal Article

Use of Detailed Kinetics and Advanced Chemistry-Solution Techniques in CFD to Investigate Dual-Fuel Engine Concepts

2011-04-12
2011-01-0895
A multi-component fuel model is used to represent gasoline in computational fluid dynamics (CFD) simulations of a dual-fuel engine that combines premixed gasoline injection with diesel direct injection. The simulations employ detailed-kinetics mechanisms for both the gasoline and diesel surrogate fuels, through use of an advanced and efficient chemistry solver. The objective of this work is to elucidate kinetics effects of dual-fuel usage in Reactivity Controlled Compression Ignition (RCCI) combustion. The model is applied to simulate recent experiments on highly efficient RCCI engines. These engine experiments used a dual-fuel RCCI strategy with port-fuel-injection of gasoline and early-cycle, multiple injections of diesel fuel with a conventional diesel injector. The experiments showed that the US 2010 heavy-duty NO and soot emissions regulations were easily met without aftertreatment, while achieving greater than 50% net indicated thermal efficiency.
Journal Article

Modeling the Detailed Chemical Kinetics of NOx Sensitization for the Oxidation of a Model fuel for Gasoline

2010-04-12
2010-01-1084
At temperatures below 1100 K, the oxidation of nitric oxide (NO) impacts the oxidation of hydrocarbons, causing a sensitization effect in fuel combustion. This effect can be important in engine operations, especially those involving high levels of exhaust-gas recirculation (EGR). Many researchers have observed this NO sensitization for the oxidation of hydrocarbons in HCCI engines as well as stirred reactors. They used several model-fuel components relevant to gasoline, such as n-heptane, iso-octane, and toluene. As found in stirred reactor experiments, NO tends to increase the extent of oxidation for high-octane fuel components, such as isooctane and toluene. However, for the low-octane component n-heptane, NO has an inhibiting effect on hydrocarbon oxidation, particularly at low temperatures corresponding to the negative temperature coefficient (NTC) region.
X