Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Development of a Crashworthy Composite Fuselage Concept

2000-04-11
2000-01-2097
An innovative composite fuselage concept for light aircraft has been developed to provide improved crash protection. The fuselage consists of a relatively rigid upper section, or passenger cabin, including a stiff structural floor and a frangible lower section that encloses the crash energy management structure. The development of the fuselage concept is described including the fabrication of a 60-in. diameter full-scale fuselage section that is manufactured using a composite sandwich construction. Drop tests of the fuselage section were performed at 372-in/s vertical velocity for both 0°- and 15°-roll impact attitudes to evaluate the crashworthy features of the fuselage design. The experimental data are correlated with analytical predictions from a crash simulation developed using the nonlinear, explicit transient dynamic finite element code, MSC/DYTRAN.
Technical Paper

Impact Evaluation of Composite Floor Sections

1989-04-01
891018
Graphite-epoxy floor sections representative of aircraft fuselage construction were statically and dynamically tested to evaluate their response to crash loadings. These floor sections were fabricated using a frame-stringer design typical of present aluminum aircraft without features to enhance crashworthiness. The floor sections were tested as part of a systematic research program developed to study the impact response of composite components of increasing complexity. The ultimate goal of the research program is to develop crashworthy design features for future composite aircraft. Initially, individual frames of six-foot diameter were tested both statically and dynamically. The frames were then used to construct built-up floor sections for dynamic tests at impact velocities of approximately 20 feet/sec to simulate survivable crash velocities. In addition, static tests were conducted to gain a better understanding of the failure mechanisms seen in the dynamic tests.
Technical Paper

Scaling Effects in the Impact Response of Graphite-Epoxy Composite Beams

1989-04-01
891014
In support of crashworthiness studies on composite airframes and substructure, an experimental and analytical study was conducted to characterize size effects in the large deflection response of scale model graphite-epoxy beams subjected to impact. Scale model beams of 1/2, 2/3, 3/4, 5/6, and full scale were constructed of four different laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic. The beam specimens were subjected to eccentric axial impact loads which were scaled to provide homologous beam responses. Comparisons of the load and strain time histories between the scale model beams and the prototype should verify the scale law and demonstrate the use of scale model testing for determining impact behavior of composite structures. The nonlinear structural analysis finite element program DYCAST (DYnamic Crash Analysis of STructures) was used to model the beam response.
Technical Paper

Impact Response of Composite Fuselage Frames

1987-05-01
871009
Graphite-epoxy frames were drop tested onto a concrete floor to simulate crash loadings. The frames have Z-shaped cross sections typical of designs often proposed for fuselage structure of advanced composite transports. A diameter of six feet for the frames was chosen to reduce specimen fabrication costs and to facilitate testing. Accelerometer, strain gage, and photographic measurements are presented which characterize the impact behavior of frames with differing masses to represent structural or seat/occupant masses. Failures of the graphite-epoxy frames involved complete separations through the cross section. All damage to the lightly loaded composite frames was confined to an area close to the impact point. Subsequent failures left and right of the impact point occurred for the more heavily loaded specimens.
Technical Paper

NASA Experiments Onboard the Controlled Impact Demonstration

1985-10-01
851885
On December 1, 1984, the National Aeronautics and Space Administration (NASA) and the Federal Aviation Administration (FAA) conducted the first remotely-piloted air-to-ground crash test of a transport category aircraft. The Full-Scale Transport Controlled Impact Demonstration (CID) was the culmination of four years of effort by the two agencies. NASA and the FAA had many objectives during the joint planning and conduct of the Controlled Impact Demonstration. NASA's interest was primarily structural crashworthiness. The FAA's primary interest was the demonstration of an antimisting fuel additive's performance. Demonstration of improved crashworthy design features was a secondary objective for the FAA. This paper is a report on the NASA experiments conducted during the CID. A portion of the preliminary structural loads data was released to the public at a Government/Industry CID Workshop held April 10, 1985, at Langley Research Center, Hampton, Virginia.
Technical Paper

Crashworthy Design Considerations for General Aviation Seats

1985-04-01
850855
This report summarizes the experimental research conducted at the NASA Langley Research Center on general aviation seat and occupant crash response and discusses seat design considerations. Included are typical floor acceleration pulses from general aviation airplane crash tests, the performance of typical general aviation seats in a simulated crash environment, and the performance of prototype energy absorbing (EA) seat designs. Static and dynamic seat testing procedures and test facilities are discussed. Also presented are results from a series of dynamic tests of typical general aviation seats and prototype EA seats.
Technical Paper

Determination of Crash Test Pulses and Their Application to Aircraft Seat Analysis

1981-02-01
810611
Deceleration time histories (crash pulses) from a series of twelve light aircraft crash tests conducted at NASA Langley Research Center (LaRC) were analyzed to provide data for seat and airframe design for crashworthiness. Two vertical drop tests at 12.8 m/s (42 ft/s) and 36 G peak deceleration (simulating one of the vertical light aircraft crash pulses) were made using an energy absorbing light aircraft seat prototype. Vertical pelvis acceleration measured in a 50 percentile dummy in the energy absorbing seat were found to be 45% lower than those obtained from the same dummy in a typical light aircraft seat. A hybrid mathematical seat-occupant model was developed using the DYCAST nonlinear finite element computer code and was used to analyze a vertical drop test of the energy absorbing seat. Seat and occupant accelerations predicted by the DYCAST model compared quite favorably with experimental values.
Technical Paper

NASA General Aviation Crashworthiness Seat Development

1979-02-01
790591
Three load limiting seat concepts for general aviation aircraft designed to lower the deceleration of the occupant in the event of a crash were sled tested and evaluated with reference to a standard seat. Dummy pelvis accelerations were reduced up to 50 percent with one of the concepts. Computer program MSOMLA (Modified Seat Occupant Model for Light Aircraft) was used to simulate the behavior of a dummy passenger in a NASA full-scale crash test of a twin engine light aircraft. A computer graphics package MANPLOT was developed to pictorially represent the occupant and seat motion.
X