Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Failure Predictions for Aluminum Tube Hydroforming Processes

2006-04-03
2006-01-0543
Two analytical tools for failure predictions in free-expansion tube hydroforming, namely “Process Window Diagram” (PWD) and forming limit curve (FLC), are discussed in this paper. The PWD represents the incipient failure conditions of buckling, wrinkling and bursting of free-expansion tube hydroforming processes in the plane of process parameters, e.g. internal pressure versus axial compression. The PWD is a useful tool for design engineers to quickly assess part producibility and process design for tube hydroforming. An attempt is also made to draw the differences between FLCs for sheet and tube so that the appropriate FLC could be used to estimate the bursting or fracture limits in free-expansion tube hydroforming processes.
Technical Paper

LS-DYNA3D Simulation of Sheet Metal Forming using Damage Based User Subroutine

2001-03-05
2001-01-1129
LS-DYNA3D has been widely used to perform computer simulation of sheet metal forming. In the material library of LS-DYNA3D there are a number of user defined material models. In order to take full advantage of the material subroutines, it is important for the users to be able to display user defined history variables in the post processing and to establish user-defined failure criterion. In this report, the development of a damage coupled plastic model is firstly described. The damage model is then programmed in a user defined material subroutine. This is followed by performing finite element simulation of sheet metal forming with the LS-DYNA3D that has incorporated the damage coupled plastic model. The way to display the user defined history variables and how to deal with the failure criterion during the postprocessing of ETA/DYNAFORM are described. History variable distributions at several time steps are displayed and discussed in this paper.
Technical Paper

On Elastoplastic Buckling of Aluminum Sheet

2000-03-06
2000-01-0767
Applying an equilibrium approach to bifurcation the buckling of elastoplastic plates is investigated. The conditions for the onset of buckling are established for simply supported plates under biaxial loading conditions. The theory is also applied to study the elastoplastic buckling phenomena of the Yoshida Buckling Test (YBT). It demonstrated that sheet dimensions used in the original YBT specimen design does not take full advantage of the maximum value of the induced compressive stress. The peak value of the induced compressive stress, which is - 14% of the tension stress, occurs at a width to length ratio of the sheet of b/a = 0.914. While the same theoretical dimension ratio of a standard YBT specimen at b/a = 0.4 results in an average induced compressive stress to be about -6% of the tension stress. The sensitivity of the buckling load predictions to mechanical properties of material is examined for all possible combinations of ratios of applied stress resultants.
Technical Paper

The Development/Application of Sheet Metal Forming Technology at Alcoa

1993-03-01
930523
The advent of high speed computers permits the use of the finite element method to model complex sheet metal forming processes on a reasonable time scale. The design and development of sheet metal parts in the automotive industry and the need for improved sheet forming processes and reduced part development cost have led to the use of computer simulation in tool/die design of sheet metal pressings. An accurate constitutive description of plastic anisotropic yield loci and work hardening of material behavior in sheet forming is now a reality. The constitutive equation developed at Alcoa for describing anisotropic material behavior is consistent with polycrystalline plasticity, and it is expected to improve the computational accuracy of forming process for polycrystalline metals and alloys.
X