Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

ZERO-ODP REFRIGERANTS FOR LOW TONNAGE CENTRIFUGAL CHILLER SYSTEMS

1996-05-01
961320
This paper investigates the use of several zero-ozone depleting potential (zero-ODP) HFC refrigerants, including HFC-134a, HFC-227ca, HFC-227ea, HFC-236ea, HFC-236cb, HFC-236fa, HFC-245cb, and HFC-254cb, for centrifugal chiller applications. We took into account the thermodynamic properties of the refrigerant and aerodynamic characteristics of the impeller compression process in this evaluation.. For a given operating temperature lift, there are significant differences in the pressure ratio required by each refrigerant and this variation in pressure ratio directly affects compressor size, efficiency, and performance. A comparison of the HFC refrigerant candidates with CFC-114 shows that HFC-236ea, HFC-227ca and HFC-227ea are viable alternatives for centrifugal water chillers. HFC-236ea has properties closest to CFC-114, and will result in comparible performance, but will require a slightly larger impeller and a purge system.
Technical Paper

DEVELOPMENT OF HFC-134a ABSORBENTS FOR THE CHEMICAL/MECHANICAL HEAT PUMP

1996-05-01
961321
This paper will describe the screening and development of absorbents for HFC-134a in the chemical/mechanical heat pump. The absorbents must have low volatility, low melting point, high solubility for HFC-134a vapor, high heat of mixing with HFC-134a, suitable vapor pressure/temperature concentration characteristics when mixed with HFC-134a, low toxicity, low flammability, and thermal stability. A screening procedure was used to select approximately 15 absorbents for experimental evaluation. Measurement of the key physical and thermodynamic properties of the absorbent/HFC-134a mixtures, such as vapor pressure/temperature/concentration properties, materials compatibility, and thermal stability, is described. From these measurements, activity coefficients, enthalpy of mixing, and entropy of mixing of the liquid solution were determined.
X