Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Effects of Ignition Timing and Air-Fuel Ratio on In-Cylinder Heat Flux and Temperatures in a Four-Stroke, Air Cooled, Homogeneous Charge Engine

1999-03-01
1999-01-0284
In-cylinder heat flux and temperature measurements were obtained in an air-cooled four-stroke utility engine for a range of air-fuel ratios. For these measurements, the magnitude of the integrated heat flux peaked at the stoichiometric air-fuel ratio, with an approximately linear decrease on either side of stoichiometric. Advancing the spark generally increased the magnitude of the integrated heat flux. Evaluation of the Brake Specific Integrated Heat Flux (BSIHF) mitigated these trends, and, the effects of changes in timing were eliminated for some operating conditions Examination of the BSIHF from the compression and expansion stroke showed behavior mimicking the full cycle BSIHF. However, the fraction of the total flux contributed by this portion of the cycle varied greatly from approximately 98% of the total to approximately 75% of the total.
Technical Paper

Carburetor Exit Flow Characteristics

1996-08-01
961730
Three different carburetor types have been tested to observe differences in the characteristics of the fuel/air mixtures produced. To characterize the fuel/air mixtures, two diagnostics have been applied: 1) High speed movies and subsequent analysis of the exit flow, and 2) measurement of the A/F ratio found in different positions within the intake manifold. The three different carburetor types that have been studied include a fixed-venturi, fixed-jet butterfly carburetor, a slide-valve carburetor, and a constant-velocity carburetor. Each carburetor type produced a unique set of exit flow characteristics, with differences in the optical density of fuel exiting the carburetor, and differences in the apparent amount of fuel on the intake manifold wall, entrained in the air flow, and in vapor phase.
X