Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Optical Investigation of Dual-fuel CNG/Diesel Combustion Strategies to Reduce CO2 Emissions

2014-04-01
2014-01-1313
Dual-fuel combustion strategies combining a premixed charge of natural gas and a pilot injection of diesel fuel offer the potential to reduce CO2 emissions as a result of the high Hydrogen/Carbon (H/C) ratio of methane gas. Moreover, the high octane number of methane means that dual-fuel combustion strategies can be employed on compression ignition engines without the need to vary the engine compression ratio, thereby significantly reducing the cost of engine hardware modifications. The aim of this investigation is to explore the fundamental combustion phenomena occurring when methane is ignited with a pilot injection of diesel fuel. Experiments were performed on a single-cylinder optical research engine which is typical of modern, light-duty diesel engines. A high-speed digital camera recorded time-resolved combustion luminosity and an intensified CCD camera was used for single-cycle OH*chemiluminescence imaging.
Technical Paper

Potential of Concomitant Injection of CNG and Gasoline on a 1.6L Gasoline Direct Injection Turbocharged Engine

2011-08-30
2011-01-1995
The use of CNG in modern spark ignition turbocharged engine offers many advantages such as high knocking resistance, low CO₂ emissions and high specific power outputs. On the other hand, compared to gasoline, the volumetric efficiency is significantly decreased when CNG is port-injected due to its low energy density. In order to address this issue, recent studies have successfully highlighted the advantages on port-injection engines of the CIGAL™ concept (Concomitant Injection of Gas And Liquid fuels) from IFP Energies Nouvelles. However, the combination of port-injection of CNG with direct injection of gasoline remains unexplored. This paper investigates this novel injection concept on the four-cylinder 1.6L turbocharged GDI engine with inlet variable valve timing resulting from the cooperation between PSA Peugeot-Citroen and the BMW Group.
Technical Paper

Direct Injection of CNG on High Compression Ratio Spark Ignition Engine: Numerical and Experimental Investigation

2011-04-12
2011-01-0923
CNG is one of the most promising alternate fuels for passenger car applications. CNG is affordable, is available worldwide and has good intrinsic properties including high knock resistance and low carbon content. Usually, CNG engines are developed by integrating CNG injectors in the intake manifold of a baseline gasoline engine, thereby remaining gasoline compliant. However, this does not lead to a bi-fuel engine but instead to a compromised solution for both Gasoline and CNG operation. The aim of the study was to evaluate the potential of a direct injection spark ignition engine derived from a diesel engine core and dedicated to CNG combustion. The main modification was the new design of the cylinder head and the piston crown to optimize the combustion velocity thanks to a high tumble level and good mixing. This work was done through computations. First, a 3D model was developed for the CFD simulation of CNG direct injection.
Journal Article

Effects of Methane/Hydrogen Blends On Engine Operation: Experimental And Numerical Investigation of Different Combustion Modes

2010-10-25
2010-01-2165
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
Journal Article

Towards an Innovative Combination of Natural Gas and Liquid Fuel Injection in Spark Ignition Engines

2010-05-05
2010-01-1513
In order to address the CO₂ emissions issue and to diversify the energy for transportation, CNG (Compressed Natural Gas) is considered as one of the most promising alternative fuels given its high octane number. However, gaseous injection decreases volumetric efficiency, impacting directly the maximal torque through a reduction of the cylinder fill-up. To overcome this drawback, both independent natural gas and gasoline indirect injection systems with dedicated engine control were fitted on a RENAULT 2.0L turbocharged SI (Spark Ignition) engine and were adapted for simultaneous operation. The main objective of this innovative combination of gas and liquid fuel injections is to increase the volumetric efficiency without losing the high knocking resistance of methane.
Journal Article

A Study of Methods to Lower HC and CO Emissions in Diesel HCCI

2008-04-14
2008-01-0034
The dramatic change in terms of pollutant constraints for diesel engines, with future Euro-6 regulations for example, will probably require the improvement of alternative combustion modes such as homogeneous combustion (Homogenous Charge Compression Ignition - HCCI). These new concepts allow the reduction of NOx and particulate emissions to very low levels for low loads thanks to a high level of external Exhaust Gas Recirculation (EGR) while maintaining CO2 emission advantage of diesel engines. Nevertheless, due to a resultant low combustion temperature, HC and CO emissions rise significantly, especially at low load when the catalyst bed temperature is not sufficient for their aftertreatment. This paper describes three considered ways to potentially overcome this barrier thanks to HCCI combustion improvement.
X