Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Transient Air-Fuel Ratio Control Using Artificial Intelligence

1997-02-24
970618
In order to reduce emissions of spare ignition engines using a three way catalyst, a stoichiometric air-fuel ratio must be guaranteed in stationary and transient operation of the engine. This aim can be reached by using a specific feed-forward structure for the control of the paths of air and fuel based on identification abilities of Artificial Intelligence. As approximators for multidimensional nonlinear static functions we will use specific Neural Networks (NN) together with sophisticated stability-proven learning structures. The acquired knowledge within the NN determines our control action mainly through using feed-forward structures. Our investigations are based on the so-called mean-value-modelling approach of SI engines; it is our aim to present this strategy.
Technical Paper

Artificial Intelligence for Combustion Engine Control

1996-02-01
960328
Existing electronic combustion engine control systems only guarantee a desired air-to-fuel-ratio λ in stationary operation. In order to achieve the desired λ also in in-stationary use of the engine, it is necessary to use new-technology-based control systems. Artificial Intelligence provides methods to cope with difficulties like wide operation range, unknown nonlinearities and time delay. We will propose a strategy for control of a Spark Ignition Engine to determine the mass of air inside the combustion chambers with the highest accuracy. Since Neural Networks are universal approximators for multidimensional nonlinear static functions they can be used effectively for identification and compensation purposes of unknown nonlinearities in closed control loops.
Technical Paper

Robust Control of a Parallel Hybrid Drivetrain with a CVT

1996-02-01
960233
In this paper the design of a robust control system for a parallel hybrid drivetrain is presented The drivetram is based on a continuously variable transmission (CVT) and is therefore a highly nonlinear multiple-input-multiple-output system (MIMO-System) Input-Output-Linearization offers the possibility of linearizing and of decoupling the system Since for example the vehicle mass varies with the load and the efficiency of the gearbox depends strongly on the actual working point, an exact linearization of the plant will mostly fail Therefore a robust control algorithm based on sliding mode is used to control the drivetrain
X