Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Direct Yaw Moment Control of Electric Vehicle with 4 In-Wheel Motors to Improve Handling and Stability

2020-04-14
2020-01-0993
More and more OEMs are interested in in-wheel-motor drive vehicles. One of the in-wheel-motor drive vehicle key technologies is multi-motor torque distribution. A direct yaw moment control strategy for torque distribution was introduced in this paper to improve 4 in-wheel-motor electric vehicle’s handling and stability. The control method consists of three components: feedback control based on target yaw rate, feedforward control based on current lateral acceleration and deceleration control based on under/oversteer situation. Feedback control is used to make vehicle’s real yaw rate following the driver’s target yaw rate and improve vehicle yaw rate response and stability. The target yaw rate is calculated by 2DOF vehicle model and limited by lateral acceleration and vehicle current steering condition. The feedforward control is used to increase the vehicle yaw rate gain and reduce the vehicle understeer characteristic when accelerating in a curve.
Technical Paper

Functional Safety Development of Bi-Directional On-Board Charger for New Energy Vehicles

2020-04-14
2020-01-0608
BOBC (Bi-directional on-board charger) is a power conversion system component for AC charging and discharging of new energy vehicles. It has two working modes: AC charging mode and AC discharge mode. In the two working modes, the BOBC belongs to both the controller and the actuator. In some extreme cases such as communication and control failure of the AC charging mode, new energy vehicles have the risk of high-voltage battery overcharging and overheating, which will lead to high-voltage battery fire or even explosion. In the AC discharge mode, it involves the actual operation of the users on electricity, and the risk of short circuit and open circuit may happen in the process, which endangers the safety of the users. Based on the risks brought by the two working modes, it should pay more attention to the safety of the BOBC.
Technical Paper

Study on Steering Effort Preference of Drivers Based on Driving Simulator

2007-08-05
2007-01-3575
This paper presents a study on steering effort preference of Chinese drivers based on ADSL Driving Simulator. The results of the simulation test demonstrates that Chinese drivers' steering effort preference increases with vehicle speed, which is similar to European and Japanese drivers', but the mean preference effort level itself is lower than that of European and Japanese drivers' and this same steering effort preference increases obviously with lateral acceleration in linear region (lateral acceleration level lower than 0.3g) while not as evidently in nonlinear region (lateral acceleration level higher than 0.3g).
X