Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Anthropometry of Indy Car Drivers

1994-12-01
942547
This study assembled a database of anatomic dimensions of Indy Car drivers and developed procedures that can be used as models for future compilations of anatomic data from specialized populations. The database defines the body configuration for the Indy Car driver population and indicates that the current HYBRID III, midsize male crash dummy will provide a reasonable approximation of that population if used in investigations involving issues of crash protection. This study took advantage of a unique opportunity to assemble an anthropometric database from a specialized population which was compared to an existing database collected from a comparable sub-set of the United States population.
Technical Paper

Research Issues on the Biomechanics of Seating Discomfort: An Overview with Focus on Issues of the Elderly and Low-Back Pain

1992-02-01
920130
This paper reviews issues relating to seats including design for comfort and restraint, mechanics of discomfort and irritability, older occupants, and low-back pain. It focuses on the interface between seating technology and occupant comfort, and involves a technical review of medical-engineering information. The dramatic increase in the number of features currently available on seats outreaches the technical understanding of occupant accommodation and ride comfort. Thus, the current understanding of seat design parameters may not adequately encompass occupant needs. The review has found many pathways between seating features and riding comfort, each of which requires more specific information on the biomechanics of discomfort by pressure distribution, body support, ride vibration, material breathability, and other factors. These inputs stimulate mechanisms of discomfort that need to be quantified in terms of mechanical requirements for seat design and function.
Technical Paper

Mechanism of Abdominal Injury by Steering Wheel Loading

1985-04-01
851724
The introduction of energy absorbing steering systems has provided a substantial reduction of occupant injury in car crashes. However, the steering system remains the most important source of occupant injury. Injury associated with steering assembly contact is due to high exposure; energy absorbing steering systems reduce the risk of injury for drivers when compared to the injury risk of right front passengers. Our investigation addressed loading of the upper abdominal region by the steering wheel rim using a physiological model for study of soft tissue injury. Injury to the liver was related to the abdominal compression response associated with rim loading. Although liver injury correlated somewhat with peak abdominal compression, a better correlation was found when the rate of compression was also considered. Force limiting by the steering wheel, not by column compression, most strongly influenced the outcome of abdominal injury.
X