Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Journal Article

Predictive Transmission Shift Schedule for Improving Fuel Economy and Drivability Using Electronic Horizon

2017-03-28
2017-01-1092
This paper proposes an approach that uses the road preview data to optimize a shift schedule for a vehicle equipped with an automatic transmission. The road preview is inferred here from the so-called electronic horizon of a digital map that includes road attributes such as road grade, curvature, segment speed limit, functional class, etc. The optimized shift schedule selects the gear ratio whose optimization is conducted through applying a hybrid model predictive control method to the powertrain system, which is modelled as the multiple plants associated with multiple gears together with engine models. The goal of this optimization of shift schedule includes improving real world fuel economy and drivability. The real-world fuel economy gains using the proposed approach are achieved through optimizing gear ratio w.r.t. the road grade variations of the road ahead.
Technical Paper

Control-oriented Reduced-order Models for Urea Selective Catalytic Reduction Systems Using a Physics-based Approach

2011-04-12
2011-01-1326
Urea-selective catalytic reduction (SCR) after-treatment systems are used for reducing oxides of nitrogen (NOx) emissions in medium and heavy duty diesel vehicles. This paper addresses control-oriented modeling, starting from first-principles, of SCR after-treatment systems. Appropriate simplifications are made to yield governing equations of the Urea-SCR. The resulting nonlinear partial differential equations (PDEs) are discretized and linearized to yield a family of linear finite-dimensional state-space models of the SCR at different operating points. It is further shown that this family of models can be reduced to three operating regions. Within each region, parametric dependencies of the system on physical mechanisms are derived. Further model reduction is shown to be possible in each of the three regions resulting in a second-order linear model with sufficient accuracy.
Journal Article

An Adaptive Proportional Integral Control of a Urea Selective Catalytic Reduction System based on System Identification Models

2010-04-12
2010-01-1174
For urea Selective Catalytic Reduction (SCR) systems, adaptive control is of interest to provide a capability of maintaining high NOx conversion efficiency and low ammonia slip in the presence of uncertainties in the system. In this paper, the dynamics of the urea SCR system are represented by a control-oriented model which is based on a linear transfer function, with parameters dependent on engine operating conditions. The parameters are identified from input-output data generated by a high fidelity full chemistry model of the urea SCR system. The use of the full chemistry model facilitated the representation of the dynamics of stored ammonia (not a directly measurable parameter) as well as post SCR NOx and ammonia slip. A closed-loop Proportional-plus-Integral (PI) controller was first designed using the estimate of stored ammonia as a feedback signal.
Technical Paper

A Verification Study for Cam Phaser Position Control using Robust Engineering Techniques

2001-03-05
2001-01-0777
This paper describes the verification and comparison of position control algorithms for a continuously-variable cam phaser. Robust Engineering techniques are used. Two non-linear PID control algorithms are designed to control cam phaser position. The first algorithm is a more complex control strategy while the second is a thrifted approach that seeks to reduce throughput requirements. An L18 orthogonal array is established with noise factors that affect the quality of cam phaser control. Using the orthogonal array, the number of experiment test points required to characterize the control algorithm response is reduced from 8,748 to thirty-six. The test points of the orthogonal array are investigated experimentally on a motored engine outfitted with cam phaser hardware. The desired and actual cam position data are compared and analyzed for all points in the orthogonal array.
Technical Paper

A Study of a Fast Light-Off Planar Oxygen Sensor Application for Exhaust Emissions Reduction

2000-03-06
2000-01-0888
It is well known that hydrocarbon reduction during a cold start is a major issue in achieving ultra low emissions standards. This paper describes one of the possible approaches for reducing the cold-start hydrocarbon emissions by using a fast “light-off” planar oxygen sensor. The goal of this study was to verify the operation characteristics of Delphi's fast “light-off” planar oxygen sensor's (INTELLEK OSP) operating characteristics and the closed-loop performance for achieving improved hydrocarbon control for stringent emission standards. Tests were conducted in open-loop and closed-loop mode under steady and transient conditions using a 1996 model year 2.4-liter DOHC in-line 4-cylinder engine with a close-coupled catalytic converter. Overall performance of the OSP showed relatively quick reaction time to reach the operating temperature.
X