Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

An Innovative Control Logic for a Four Wheel Steer Vehicle – Part 2: Simulation and Road Test

2005-04-11
2005-01-1268
A four wheel steer control logic is described. A first control logic release, obtained during previous research activity, is based only on feed forward (F.F.) but is here upgraded merging closed loop control (C.L.). Integration between F.F. and C.L. is described. Rear steering electromechanical actuator frequency response is analyzed, in order to consider its not ideal behaviour during control logic design. Several simulation are performed to qualitatively evaluate the error committed considering an ideal actuator during the control logic design. Specific manoeuvres are chosen to investigate about active system influence on vehicle handling; a 14 degrees of freedom vehicle model is validated in order to compare simulation results with experimental data.
Technical Paper

An Innovative Control Logic for a Four Wheel Steer Vehicle - Part 1: Analysis and Design

2005-04-11
2005-01-1267
Through a single track model, correspondence between typical frequency analysis coefficients and test driver's opinion developed after experimental tests has been stated. Benchmark analysis of several vehicles, considered significant, has been carried out as well as a sensitivity analysis of vehicle behavior depending on passive design parameters, such as vehicle sideslip stiffness and tyre relaxation length. It led to the definition of the different transfer function capable of describing passive vehicle linear behavior; vehicle performance limits, due to unbridgeable physical phenomenon, has been also considered. 4WS vehicle chance to overcome these limits has been investigated, depending on rear steering control logic complexity. Vehicle frequency response has been then analyzed for different longitudinal velocity, introducing thus the concept of “natural vehicle”. The design of a four wheel steer system control logic, based only on feed forward, is described.
Technical Paper

Driveline Layout Influence on Four Wheel Drive Dynamics

2004-03-08
2004-01-0860
The paper presents the research activity managed to investigate the dynamics of a 4WD vehicle equipped considering drivelines with different layout. The procedure developed required to conceive an on purpose simulator to compare performance through virtual experimentation. Drivelines mechanical main characteristics and performance increasing due to control strategy were evaluated. Preliminary road test were performed with a single driveline layout, to evaluate simulation reliability and limits. The paper presents the 4WD vehicle simulator, the main equations applied to model open, torque sensing and limited slip differentials, some preliminary road test results showing torque sensing driveline performance.
Technical Paper

Active Roll Control to Increase Handling and Comfort

2003-03-03
2003-01-0962
The paper deals with the elaboration of an Active Roll Control (ARC) oriented both on comfort and handling improvement. The ARC determines hydraulically the variation of the equivalent stiffness of the anti-roll bars. The control strategies conceived were extensively validated through road tests managed on an Alfa Romeo sedan. The first part of the paper deals with comfort improvement, mainly consisting in an absence of bar effect during straight-ahead travel and in a modification of the roll characteristic of the car. To increase driver's handling feeling, it was necessary to optimise the ratio between front and rear roll stiffness. This purpose can be reached through control strategies based exclusively on lateral acceleration. Some control strategy corrections were necessary to optimise roll damping and front/rear roll stiffness balancing.
Technical Paper

Modelling Vehicle Dynamics for Virtual Experimentation, Road Test Supporting and Dynamic Control

2002-03-04
2002-01-0815
Product development in automotive industry is still deeply based on experimentation: test benches and road test facilities are used both for components testing and models validation. Nevertheless a growing role is played by numerical simulation and nowdays by virtual experimentation. The latter is required by the increasing complexity of the systems and cost saving. Moreover new products involve a higher level of integration between mechanics, electronics and computer science, which makes difficult a rapid and low cost prototyping. The design of the vehicle is currently applied to the overall system instead of assembling subsystems separately developed and tested. This approach requires that the same level of integration is achieved on numerical codes and simulators, to be able to operate hardware and software for virtual experimentation in mechatronic systems. This paper briefly describes the experience done since few years, by Fiat Auto and Politecnico di Torino (Dept.
X