Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Scalable Vehicle Models for Tire Testing

2015-04-14
2015-01-1517
Tire manufacturers need to perform various types of testing to determine tire performance under representative vehicle load conditions. However, test results are influenced by a number of external variables other than tire construction. Vehicle load distribution and suspension properties are some of those external variables which can have a significant effect on tire wear rate and durability. Therefore, in order to measure real world tire performance in a controlled and repeatable manner, a representative vehicle and associated tire load conditions are needed. Laboratory or indoor tire testing offers many advantages over vehicle fleet testing. It provides a well-defined test environment and repeatable results without influence from external factors. Indoor testing has been largely developed around the process of simulating tire wear performance on a specific reference vehicle, including its specific weight distribution, suspension characteristics, and alignment.
Technical Paper

Laboratory Tire Wear Simulation Process Using ADAMS Vehicle Model

1996-02-01
961001
Computer simulation technology coupled with indoor laboratory facilities is being used in the automotive industry to provide up-front assessment of vehicle performance. This paper presents a technique to evaluate passenger vehicle tire wear performance as related to suspension and tire design early in the design process. Motivation for developing this tool is to optimize suspension and tire design to tire wear early in the design process. This approach has resulted in reductions in vehicle development time, dependency on outdoor testing and the need for expensive prototype vehicles. A full vehicle ADAMS model of a production vehicle is used to animate vehicle suspension kinematic motions, and dynamic tire forces of vehicle maneuvers for a preselected outdoor tire wear route. Time histories of five vehicle parameters are generated: radial force, slip angle or lateral force, camber, velocity and driving and braking torques.
X