Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Gasoline Distillation Effect on Vehicle Cold Start Driveability

2007-10-29
2007-01-4073
Cold start vehicle driveability performance depends on many parameters, one of which is the distillation character of the fuel. In the late 90's, a gasoline driveability index (DI) was developed for spark ignited combustion vehicles by a consortium of automotive and petroleum industry scientists based on correlation studies between controlled fuel quality matrices and vehicle performance under specific ambient conditions. The DI equation uses a weighted sum of gasoline distillation temperatures at the 10, 50 and 90 percent evaporation volumes, commonly called T10, T50 and T90. These three distillation volatility points are specified by the ASTM International D 4814 fuel specification and are seasonally adjusted. This paper studies the cold start driveability performance of Federal EPA Bin 5 and Bin 8 vehicles with respect to fuel distillation characteristics at temperatures other than T10, T50 and T90.
Technical Paper

Reactor Evaluation of Ceria-Zirconia as an Oxygen Storage Material for Automotive Catalysts

1997-02-24
970462
We have prepared and tested laboratory scale monoliths wash-coated with 10, 20 and 30 wt% of either CeO2 or Ce.75Zr.25O2 (remainder is alumina). Wet impregnation was used to load the wash-coated monoliths with 50g/ft Pt:Rh at a 5:1 ratio. The catalyst were aged at temperatures between 825°C and 950°C using a cycled redox aging. The catalysts were then tested in a full-feed simulated exhaust laboratory reactor with air-to-fuel ratio (A/F) perturbations (frequencies at 1 and 3 Hz and amplitudes up to +/- 0.8 A/F). Even the lowest loading of Ce.75Zr.25O2 outperformed all three loadings of CeO2 over a full range of reaction temperatures, A/F perturbations, and catalyst space velocity (SV). Our data indicates that the ceria-zirconia catalysts can tolerate cycled redox aging at sustained bed temperatures at least 25°C higher (∼925°C vs. < 900°C) than can ceria. For the CeO2 catalysts aged at or above 900°C we observed an inverse correlation of catalyst activity to CeO2 loading.
X