Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Effects of the MMT® Fuel Additive on a Catalyzed Diesel Particulate Filter

2003-10-27
2003-01-3145
Emissions regulations for 2007 will likely require engine manufacturers to use a diesel particulate filter (DPF) to meet particulate matter (PM) emission requirements. With the lower operating temperatures of light-duty diesel engines, some form of catalyst will be required to facilitate oxidation of accumulated soot PM to regenerate the DPF. This catalyst can either be permanently applied to the filter substrate in the manufacturing process, or be continuously delivered via the diesel fuel. In this study we examined the impact of using both forms of catalyst. A recently published study of the fuel-borne catalyst additive MMT [1] (Methylcyclopentadienyl Manganese Tricarbonyl), reviewed the performance of MMT in conjunction with an uncatalyzed DPF [2].
Technical Paper

The Role that Methylcyclopentadienyl Manganese Tricarbonyl (MMT®) Can Play in Improving Low-Temperature Performance of Diesel Particulate Filters

2002-10-21
2002-01-2728
Control and elimination of mobil-source particulate matter (PM) emissions is of increasing interest to engineers and scientists as regulators in industrialized countries promulgate lower emission levels in diesel engines. Relative to their gasoline engine counterparts, today's diesel engines, in general, still emit a higher mass of PM. While strictly speaking, this PM is an agglomeration of organic and inorganic particles, the predominant component is carbon and is commonly referred to as “soot”. For mobil-source PM control, one of the current preferred technologies is the ceramic closed-cell monolith Diesel Particulate Filter (DPF). Ideally, DPFs accumulate and store PM during low speed/temperature engine operation and burn the accumulated PM during high speed/temperature operation.
Technical Paper

Development of an I/M Short Emissions Test for Buses

1992-02-01
920727
Emissions from existing diesel-powered urban buses are increasingly scrutinized as local, state, and federal governments require enforcement of more stringent emission regulations and expectations. Currently, visual observation of high smoke levels from diesel-powered equipment is a popular indicator of potential emission problems requiring tune-up or engine maintenance. It is important that bus inspection and maintenance (I/M) operations have a quality control “test” to check engine emissions or diagnose the engine state-of-tune before or after maintenance. Ideally, the “emission test” would be correlated to EPA transient emissions standards, be of short duration, and be compatible with garage procedures and equipment. In support of developing a useful “short-test,” equipment was designed to collect samples of raw exhaust over a short time period for gaseous and particulate emissions.
Technical Paper

Fuel and Maladjustment Effects on Emissions from a Diesel Bus Engine

1991-02-01
910735
Substantial efforts have been made to reduce emissions from future heavy-duty diesel engines by control of selected fuel properties. U.S. diesel fuel for transportation use is scheduled by EPA to have low sulfur (≤ 0.05 wt. %) and a minimum cetane index of 40 by 1994 to reduce emissions. In addition, California has mandated that low sulfur diesel fuels contain less than 10 volume percent aromatics by 1994. Relative to emissions impact, diesel engine design and state-of-tune are perhaps even more important than proposed changes to diesel fuel. The work reported here examined emissions from a 1986 DDC 6V92-TA bus engine using fuels with variation in cetane number, aromatic level, 90 percent boiling point, and sulfur content. The engine was run on these fuels with selected maladjustments to examine their interactive effects on bus engine emissions. Except for HC emissions, regulated emissions were affected more by state-of-tune than by variation in test fuel properties.
Technical Paper

Simulation of High Altitude Effects on Heavy-Duty Diesel Emissions

1990-04-01
900883
Exhaust emissions from heavy-duty diesel engines operating at high altitude are of concern. EPA and Colorado Department of Health sponsored this project to characterize regulated and selected unregulated emissions from a naturally-aspirated Caterpillar 3208 and a turbocharged Cummins NTCC-350 diesel engine at both low altitude and simulated high attitude conditions (≈ 6000 ft). Emissions testing was performed over cold- and hot-start transient Heavy-Duty-Federal Test Procedure (HD-FTP) cycles as well as selected steady-state modes. In addition, the turbocharged engine was operated with mechanically variable and (fixed) retarded fuel injection timing to represent “normal” and “malfunction” conditions, respectively. High altitude operation generally reduced NOx emissions about 10 percent for both engines.
X