Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

Evaluation of Flow Paths due to Leakages of Flammable Liquids by the SPH Method: Application to Real Engines

2020-04-14
2020-01-1111
One of the most important safety issues for automotive engineering is to avoid any fire due to the ignition of flammable liquids, which may result from leaks. Fire risk is a combination of hot temperature, fast vaporisation and accumulation of vapor in a cavity. In IC engines, potentially flammable liquids are fuel and oil. To guarantee safety, flammable liquids must not come into contact with hot parts of the engine. Consequently, shields are designed to guide the flow path of possible leakages and to take any flammable liquid out of the hot areas. Simulation is a great help to optimize the shape of the shield by investigating a large number of possible leakages rapidly. Recent breakthroughs in numerical methods make it possible to apply simulations to industrial design concepts. The employed approach is based on the Lagrangian Smoothed Particle Hydrodynamics (SPH) method.
Journal Article

Immersion Quenching Simulation of Realistic Cylinder Head Geometry

2014-04-01
2014-01-0641
In this paper, a recently improved Computational Fluid Dynamics (CFD) methodology for virtual prototyping of the heat treatment of cast aluminum parts, above most of cylinder heads of internal combustion engines (ICE), is presented. The comparison between measurement data and numerical results has been carried out to simulate the real time immersion quenching cooling process of realistic cylinder head structure using the commercial CFD code AVL FIRE®. The Eulerian multi-fluid modeling approach is used to handle the boiling flow and the heat transfer between the heated structure and the sub-cooled liquid. While for the fluid region governing equations are solved for each phase separately, only the energy equation is solved in the solid region. Heat transfer coefficients depend on the boiling regimes which are separated by the Leidenfrost temperature.
Technical Paper

Numerical Simulation Study of Cavitating Nozzle Flow and Spray Propagation with Respect to Liquid Compressibility Effects

2014-04-01
2014-01-1421
The paper addresses aspects of modeling cavitating flows within high pressure injection equipment while considering the effects of liquid compressibility. The presented numerical study, performed using the commercial CFD code AVL FIRE®, mimics common rail conditions, where the variation in liquid density as a function of pressure may be relevant owing to very high pressure injection scenarios. The flow through the injector has been calculated and the conditions at the outlet of the nozzle orifice have been applied as inlet condition for subsequent Euler-Lagrangian spray calculations to investigate the effects of liquid compressibility treatment on spray propagation. Flows of such nature are of interest within automotive and other internal combustion (IC) related industries to obtain good spray and emissions characteristics.
Technical Paper

Numerical Study of Transient Multi Component Fuel Injection

2013-10-14
2013-01-2550
Direct injection of gasoline fuel has been gaining on applicability in recent years. Direct injection spark ignited engine has been one of the most investigated designs for achieving lower fuel consumption and for increasing the performance. Maintaining low emissions, decreasing fuel consumption and keeping driving performance are key challenges. Fuel injection quality is one of the most important factors, which directly affect general engine requirements like fuel mass flow, spray penetration and atomization for the combustion process. The multi-hole injector design is a very promising design type for application in direct fuel injection in automotive petrol engines. As a consequence of decreasing supplies of fossil fuels, mixing of different fuel components has become very common in recent years. The type of components which are to be mixed depends on local geographical fuel availability and motorization type.
Technical Paper

Advances in Numerical Investigation of Immersion Quenching at Different Pool Temperatures

2013-10-07
2013-36-0369
This paper outlines an improved computational methodology to simulate the immersion quenching heat transfer characteristics. Main applicability of the presented method lays in virtual experimental investigation of the heat treatment of cast aluminum parts, above all cylinder heads of internal combustion engines. The boiling phase change process between the heated part and a sub-cooled liquid domain is handled by using the Eulerian multi-fluid modeling approach, which is implemented within the commercial Computational Fluid Dynamics (CFD) code AVL FIRE®. Solid and liquid domains are treated simultaneously. While for the fluid domain mass, momentum and energy equations are solved in the context of multi-fluid modeling approach, only the energy equation is solved to predict the thermal field in the solid region. For the presented quenching simulation, the solid and fluid parts are contained in a single domain.
Journal Article

Integrated 1D/2D/3D Simulation of Fuel Injection and Nozzle Cavitation

2013-09-08
2013-24-0006
To promote advanced combustion strategies complying with stringent emission regulations of CI engines, computational models have to accurately predict the injector inner flow and cavitation development in the nozzle. This paper describes a coupled 1D/2D/3D modeling technique for the simulation of fuel flow and nozzle cavitation in diesel injection systems. The new technique comprises 1D fuel flow, 2D multi-body dynamics and 3D modeling of nozzle inner flow using a multi-fluid method. The 1D/2D model of the common rail injector is created with AVL software Boost-Hydsim. The computational mesh including the nozzle sac with spray holes is generated with AVL meshing tool Fame. 3D multi-phase calculations are performed with AVL software FIRE. The co-simulation procedure is controlled by Boost-Hydsim. Initially Hydsim performs a standalone 1D simulation until the needle lift reaches a prescribed tolerance (typically 2 to 5 μm).
Technical Paper

Numerical Prediction of Erosive Cavitating Flows in Injection Equipment

2011-09-11
2011-24-0004
The paper demonstrates the capability of the commercial Computational Fluid Dynamics (CFD) code AVL FIRE to predict erosive effects due to cavitation. Such flows are of interest within the automotive and other internal combustion (IC) related industries using fuel injection components. Ability to predict such internal flows through CFD allows for improved engine efficiency, decreased emissions and shorter development cycles. Accurate modeling of cavitating flows is a prerequisite for the prediction of erosion effects and is described here. Driving force for erosive damage are the implosions of the bubbles generated due to cavitation and thereafter collapsing on the surface of the exposed material. Therefore, prediction of vapor generation and accurate transport of the bubbles are crucial. Investigated injector featured a single injector body in combination with two different needle (i.e. plunger) designs. The shape of the needle governed the nature of the flow through the injector.
Technical Paper

Integrated Cavitating Injector Flow and Spray Propagation Simulation in DI Gasoline Engine

2005-09-11
2005-24-085
A methodology to simulate the injection process in the internal combustion (IC) engines by means of Computational Fluid Dynamics (CFD) is presented. Entire sequence of the gasoline injection processes, starting with a transient injector-flow simulation and continuing with break-up and spray propagation using AVL FIRE, is shown. In the first part, a multidimensional model for the cavitating flow in a multi-hole gasoline injector is presented, based on the two-fluid model and capable to simulate N-phase systems. Considered fluid components are liquid fuel and fuel vapor. Momentum and mass exchange between the two phases are accounted for. In the second part of the work, the link between nozzle flow and spray formation is established performing simulations including the break-up model. This calculates the initial conditions for the spray droplets, e.g., size and velocity, based on the local turbulent kinetic energy (TKE), velocity and phase distribution at the nozzle orifice.
X