Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Strategies for Burr Minimization and Cleanability in Aerospace and Automotive Manufacturing

2005-10-03
2005-01-3327
The quality of machined components in the aerospace and automotive industries has become increasingly critical in the past years because of greater complexity of the workpieces, miniaturization, usage of new composite materials, and tighter tolerances. This trend has put continual pressure not only on improvements in machining operations, but also on the optimization of the cleanability of parts. The paper reviews recent work done in these areas at the University of California-Berkeley. This includes: Finite element modeling of burr formation in stacked drilling; development of drill geometries for burr minimization in curved-surface drilling; development of a enhanced drilling burr control chart; study of tool path planning in face-milling; and cleanability of components and cleanliness metrics.
Technical Paper

Burr Prevention and Minimization for the Aerospace Industry

1999-06-05
1999-01-2292
Burr research is undeniably highly complex. In order to advance understanding of the process involved several techniques are being implemented. First a detailed and thorough examination of the burr forming process is undertaken. The technique is difficult, intricate and time consuming, but delivers a large amount of vital physical data. This information is then used in the construction of empirical models and, in some case lead to development of FEM models. Finally using the model as a template, related burr formation problems that have not been physically examined can be simulated and the results used to control process planning resulting in the reduction of burr formation. We highlight this process by discussing current areas of research being followed at the University of California in collaboration with Boeing and the Consortium on Deburring and Edge Finishing (CODEF).
X