Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Intelligent Flexible Materials for Deployable Space Structures (InFlex)

2006-07-17
2006-01-2065
This paper summarizes the development of multi-functional intelligent flexible materials for deployable space structures, otherwise known as the InFlex program. The goal of the work was to enhance the capabilities of inflatable structures for exploration activities such as habitats, airlocks, and space suits, with improved materials ultimately to reduce crew burden and lifecycle costs, improve system safety, and reduce system mass and launch volume. Several technical areas were investigated concurrently in an effort to combine functions and create efficient structures. These included self-healing materials, structural health monitoring systems, radiation protective materials, reduced permeability materials, anti-microbial materials, and embedded power generation and storage technologies. Methods of signal transfer were also studied in conjunction with a centralized display and warning system to interact with systems operations personnel.
Technical Paper

Micrometeoroid and Orbital Debris Enhancements of Shuttle Extravehicular Mobility Unit Thermal Micrometeoroid Garment

2006-07-17
2006-01-2285
As NASA is preparing to extend man's reach into space, it is expected that astronauts will be required to spend more and more time exposed to the hazards of performing Extra-Vehicular Activity (EVA). One of these hazards includes the risk of the space suit bladder being penetrated by hypervelocity micrometeoroid and orbital debris (MMOD) particles. Therefore, it has become increasingly important to investigate new ways to improve the protectiveness of the current Extravehicular Mobility Unit (EMU) against MMOD penetration. ILC Dover conducted a NASA funded study into identifying methods of improving the current EMU protection. The first part of this evaluation focused on identifying how to increase the EMU shielding, selecting materials to accomplish this, and testing these materials to determine the best lay-up combinations to integrate into the current thermal micrometeoroid garment (TMG) design.
Technical Paper

Recent Advances in the Development of Spacesuit Gloves

1996-07-01
961424
The continuous development of Extravehicular Activity (EVA) spacesuit gloves has lead to an effective solution for performing EVA to date. Some aspects of the current EVA gloves have been noted to affect crew performance in the form of limited dexterity and accelerated onset of fatigue from high torque mobility joints. This in conjunction with the fact that more frequent and complex EVAs will occur with the fabrication and occupation of Space Station Freedom, suggest the need for improved spacesuit gloves. Therefore, several efforts have been conducted in the recent past to enhance the performance of the spacesuit glove. The following is a description of the work performed in these programs and their impact on the design and performance of EVA equipment. In the late 1980's and early 1990's, a spacesuit glove design was developed that focused on building a more conformal glove with improved mobility joints that could function well at a higher operating pressure.
Technical Paper

Spacesuit Glove Manufacturing Enhancements Through the Use of Advanced Technologies

1993-07-01
932102
The success of astronauts performing extravehicular activity (EVA) on orbit is highly dependent upon the performance of their spacesuit gloves. A study has recently been conducted to advance the development and manufacture of spacesuit gloves. The process replaces the manual techniques of spacesuit glove manufacture by utilizing emerging technologies such as laser scanning, Computer Aided Design (CAD), computer generated two-dimensional patterns from three-dimensional surfaces, rapid prototyping technology, and laser cutting of materials, to manufacture the new gloves. Results of the program indicate that the baseline process will not increase the cost of the gloves as compared to existing styles, and in production, may reduce the cost of the gloves. Perhaps the most important outcome of the Laserscan process is that greater accuracy and design control can be realized.
Technical Paper

Enhanced Softgoods Structures for Spacesuit Micrometeriod/Debris Protective Systems

1992-07-01
921258
Based on recently revised space debris environment estimations for Low Earth Orbit (LEO) altitudes, the level of Micrometeoroid/Debris (M/D) protection afforded by the current Shuttle space suit layup may not be sufficient for application to the Space Station Freedom Program. Enhanced M/D protection could be incorporated through the use of a flexible multi-hull Thermal Micrometeoroid Garment (TMG) based on advanced fabric material layups. A lightweight, flexible TMG design for enhanced space suit M/D protection would potentially consist of an outer layer or “shield” comprised of Orthofabric, multi-layers of aluminized Mylar and a layer of silicone rubber loaded with micron sized particles of tungsten. The second layer or “backup sheet” would be comprised of a layer(s) of a fabric material such as Spectra (UHMWPE). The shield layers would fragment and/or vaporize the M/D projectile while the backup sheet would stop the resultant debris cloud.
X