Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

MMLV: Chassis Design and Component Testing

2015-04-14
2015-01-1237
The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefits and fuel consumption reduction. As part of this project, several automotive chassis components were selected for development and evaluation on the MMLV C/D segment passenger sedan.
Technical Paper

FEA Predictions and Test Results from Magnesium Beams in Bending and Axial Compression

2010-04-12
2010-01-0405
Finite element analysis (FEA) predictions of magnesium beams are compared to load versus displacement test measurements. The beams are made from AM60B die castings, AM30 extrusions and AZ31 sheet. The sheet and die cast beams are built up from two top hat sections joined with toughened epoxy adhesive and structural rivets. LS-DYNA material model MAT_124 predicts the magnesium behavior over a range of strain rates and accommodates different responses in tension and compression. Material test results and FEA experience set the strain to failure limits in the FEA predictions. The boundary conditions in the FEA models closely mimic the loading and constraint conditions in the component testing. Results from quasi-static four-point bend, quasi-static axial compression and high-speed axial compression tests of magnesium beams show the beam's behavior over a range of loadings and test rates. The magnesium beams exhibit significant material cracking and splitting in all the tests.
Technical Paper

Aluminum Subframe Design for Crash Energy Management

2004-03-08
2004-01-1775
The engine subframe (cradle) is an important contributor to crash energy management in frontal impact for automotive vehicles. Subframe design can enhance vehicle crash performance through energy management. In addition to energy management targets, the subframe must meet stiffness, durability and other vehicle engineering requirements. Various subframe concepts are reviewed. Their design intents and vehicle performance are discussed. A development process of an aluminum subframe is then presented which details the subframe design as an energy absorbing component for frontal impacts. The architecture of the subframe is developed based on overall functionality requirements and package constraints. The geometry of the subframe is first designed to accommodate engine mounts and suspension support locations. The subframe member's shape, orientation, and location are then refined to accommodate the subframe-to-body connection requirements.
Technical Paper

Finite element simulation of drive shaft in truck/SUV frontal crash

2001-06-04
2001-06-0106
Drive shaft modelling effects frontal crash finite element simulation. A 35 mph rigid barrier impact of a body on frame SUV with an one piece drive shaft and a unibody SUV with a two piece drive shaft have been studied and simulated using finite element analyses. In the model, the drive shaft can take significant load in frontal impact crash. Assumptions regarding the drive shaft model can change the predicted engine motion in the simulation. This change influences the rocker @ B-pillar deceleration. Two modelling methods have been investigated in this study considering both joint mechanisms and material failure in dynamic impact. Model parameters for joint behavior and failure should be determined from vehicle design information and component testing. A body on frame SUV FEA model has been used to validate the drive shaft modeling technique by comparing the simulation results with crash test data.
Technical Paper

Analytical Crush Resistance of Hybrid Aluminum-RCM Roof Structures

2000-03-06
2000-01-0066
The crush resistance of roof structures is critical to minimizing injuries and enhancing occupant survival during rollover crashes. Federal Motor Vehicle Safety Standard FMVSS 216 requires the roof structure to resist a load equal to one and one half (1&1/2) the unloaded weight of the vehicle during the first 127 millimeters (five inches) of deformation. This paper discusses the analytical methodologies applied and challenges encountered developing a hybrid Aluminum-Random Chop Material (RCM) roof structure. The roof structure materials are extruded 6260T6 aluminum and RCM. This hybrid roof structure has to satisfy not only the FMVSS 216 roof crush resistance, but also packaging, torsional stiffness and head impact requirements. Due to packaging constraints, the structure has to be developed without the roof bow at the B-pillar level.
Technical Paper

Energy Finite Element Analysis Methods for Mid-Frequency NVH Applications

1999-05-17
1999-01-1801
At low frequencies, the finite element method reliably predicts the dynamic response of structures. At high frequencies where modal density is high, statistical energy analysis (SEA) is a useful tool to determine the global dynamic behavior of the structures. SEA gives only the space frequency band averaged energy for each subsystem. In the mid-frequency range where both short and long waves are present, neither low nor high frequency approximation to the dynamic response is valid. In this frequency range, there is a need to utilize another technique to capture the dynamic response of the structure. In this study, the energy finite element analysis (EFEA) method is evaluated as a possible technique to close the mid-frequency analysis gap related to NVH analyses. EFEA gives spatial variations of energy density and power in each subsystem, and models localized damping treatment and localized power input.
Technical Paper

FEA (Finite Element Analysis) Modeling for Body-in-White Adhesives

1996-02-01
960784
Adhesive bonding of body-in-white (BIW) automotive structures offers potential improvements in NVH (noise, vibration and harshness) and mechanical durability. To effectively include structural adhesive bonding in BIW designs, vehicle program teams must be able to quantify the benefits obtained from the adhesive joints. Finite element analysis (FEA) modeling can provide information on the stiffness and durability improvements obtainable from including adhesive joints in BIW structures. The stiffness effects of an adhesive joint can be economically included in a full BIW FEA model through the use of sets of three springs connecting adjoining node pairs on the opposing faces of a joint. A single spring models the tension and compression stiffness of the adhesive while two additional springs aligned perpendicular to each other and to the tension/compression spring portray the adhesive's shear stiffness.
X