Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Determination of Assembly Stresses in Aluminum Knuckles

1999-03-01
1999-01-0345
In this paper, an analytical method is proposed for determining the stress distributions in steering knuckle/tapered stud assemblies. The method is based on solutions of the plane stress thick cylinder interference fit problem with modifications to account for the effects of stud taper and dissimilar component materials. The analytical solutions are applied to knuckle/tapered stud assemblies. The results from the analytical solutions are compared to those from a finite element analysis. It is shown that the analytical and FEA results are in good agreement for several load and frictional conditions, and the hoop and radial stress solutions presented in this paper are good engineering solutions to the knuckle/tapered stud problem where the draw distance is provided.
Technical Paper

Validation of the Statistical Strain-Life Design Curves for Various Grades of Sheet Steel

2004-03-08
2004-01-0686
In this paper, constant amplitude strain-life fatigue data from a variety of sheet steel suppliers is examined. The data is processed to remove unsatisfactory test results, and the median curves for both the elastic and plastic strain-life relationships are determined. Statistical single-sided elastic and plastic strain-life design curves are generated using the approximate Owen lower tolerance limit method. The resulting statistical total strain-life design curves are then compared to an established theoretical single-sided statistical tolerance limit to assess the validity of using the approximate Owen lower tolerance limit method for the generation of single-sided design curves for strain-life fatigue data.
Technical Paper

Vehicle Powertrain Loading Simulation and Variability

2004-03-08
2004-01-1563
In this paper, loads acting on driveline components during an entire proving ground (PG) durability schedule are used to demonstrate the methodology of optimizing driveline performance reliability using both physical and computational methods. It is well known that there is an effect of driver variability on the driveline component loads. Yet, this effect has not been quantified in the past for lack of experimental data from multiple drivers and reliable data analysis methods. This paper presents the data reduction techniques that are used to identify the extreme driver performance and to extrapolate the short-term measurement to long-term data for driveline performance reliability. The driveline loading variability is made evident in the rotating moment histogram domain. This paper also introduces the concept for a simulation model to predict the driveline component loads based on a complete proving grounds schedule. A model-to-test correlation is also performed in this paper.
X