Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Environmental Sensor Technology Selection Process for Exploration

2005-07-11
2005-01-2872
In planning for Exploration missions and developing the required suite of environmental monitors, the difficulty lies in down-selecting a multitude of technology options to a few candidates with exceptional potential. Technology selection criteria include conventional analytical parameters (e.g., range, sensitivity, selectivity), operational factors (degree of automation, portability, required level of crew training, maintenance), logistical factors (size, mass, power, consumables, waste generation) and engineering factors such as complexity and reliability. Other more subtle considerations include crew interfaces, data readout and degree of autonomy from the ground control center. We anticipate that technology demonstrations designed toward these goals will be carried out on the International Space Station, the end result of which is a suite of techniques well positioned for deployment during Exploration missions.
Technical Paper

Chemical Sensor Testing for Space Life Support Chemical Processing: Part I. Moisture Sensors

1994-06-01
941263
In support of the National Aeronautics and Space Administration(NASA), a laboratory has been established at the Jet Propulsion Laboratory (JPL) to evaluate the characteristics of chemical sensors which are candidates for use in a controlled chemical processing life support system. Such a facility is required for characterizing those sensors under development as well as those commercially available but whose functional properties are typically based upon operating in industrial environments that will not be completely synonomous with space operations. Space environments, such as an orbiting station or lunar base, will generally have different sensor requirements than terrestrial applications with respect to size, multifunctionality, sensitivity, reliability, temperature, ruggedness, mass, consumables, life, and power requirements. Both commercially available and developmental moisture sensors have been evaluated.
Technical Paper

Thermal, Mass, and Power Interactions for Lunar Base Life Support and Power Systems

1993-07-01
932115
A model has been developed for quantitative examination of the integrated operation of a lunar base power system, employing regenerative fuel cell technology, which would lead to incorporation into a lunar base life support system. The model employs methods developed for technology and system trade studies of the Life Support System configuration for the National Aeronautics and Space Administration (NASA). This paper describes the power system and its influence on life support while comparing various technologies, including pressurized gas storage and cryogenic storage, and different operation conditions. Based on preliminary assumptions, the mass, power, and thermal requirement estimates are made at the level of major components. The relative mass contribution and energy requirements of the components in various configurations are presented.
X