Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Automated 6DOF Model Generation and Actuator Sizing within AFSIM

2019-03-19
2019-01-1336
The Air Force Research Laboratory has interest in automatically generating the extensive aerodynamic databases essential for six degree of freedom (6DOF) models and the use of 6DOF models for design. To be most useful, automation must include all aspects of producing the database including meshing, control surface deflections, running the CFD solution, and storage of the results. This effort applies newly-developed software to produce the desired results. Firstly, AFRL software called Computational Aircraft Prototype Syntheses (CAPS) allows automated meshing using the Advancing Front Local Reconnection (AFLR) software from Mississippi State University1 and automated control surface deflection using Engineering Sketch Pad (ESP) software from MIT/Syracuse. CAPS includes the ability to run the NASA CFD code FUN3D and interpret the FUN3D results via an Application Interface Module (AIM). This may sound like a complicated process.
Technical Paper

Development of Installed Propulsion Performance Model for Efficient Supersonic Air Vehicle Design

2014-09-16
2014-01-2133
For the design process of the class of aircraft known as an efficient supersonic air vehicle, particular attention must be paid to the propulsion system design as a whole including installation effects integrated into a vehicle performance model. The propulsion system assumed for the efficient supersonic air vehicle considered in this paper is a three-stream variable cycle engine. A computational model has been built with the Numerical Propulsion System Simulation (NPSS) software to analyze this engine. This engine model was based on the generic adaptive turbine engine model developed at the turbine engines division of the US Air Force Research Laboratory. Along with this variable cycle NPSS model, a three-ramp external compression inlet model meant for conceptual design has been developed. This model will be used to capture inlet installation effects, including those attributable to angle of attack changes at supersonic Mach numbers.
X