Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Hydrocarbon Adsorber Technology

2007-04-16
2007-01-1434
Various government agencies such as EPA and CARB have established evaporative emission standards for light duty vehicles. To help the OEM's meet these emission standards for volatile organic compounds (VOC's), Honeywell has developed a hydrocarbon adsorber (HCA) approach to reduce hot soak emissions that escape through the air induction system. The HCA has a small footprint and is incorporated in the air filter housing while having a minimal impact on the air flow to the engine during normal operation. As required through EPA regulations it is permanently mounted to provide life of the vehicle durability. In this paper, the process for selecting the VOC adsorbent that functions within the parameters of the hot soak cycle and is regenerated under standard engine operation is discussed. An important part of this technology has been the development of a laboratory test that would simulate engine conditions and permit evaluation of various HCA prototypes.
Technical Paper

Diesel Fuel Desulfurization Filter

2007-04-16
2007-01-1428
The molecular filtration of sulfur components in ultra low sulfur diesel (ULSD) fuel is described. A comprehensive screening of potential sulfur removal chemistries has yielded a sorbent which has the capability to efficiently remove organo-sulfur components in ULSD fuel. This sorbent has been used to treat ULSD fuel on a heavy duty engine equipped with NOx adsorber after-treatment technology and has been shown to lengthen the time between desulfation steps for the NOx adsorber. The fuel properties, cetane number and aromatics content, etc., have not been changed by the removal of the sulfur in the fuel with the exception of the lubricity which is reduced.
Technical Paper

Advances in Plastic Gasoline Barrier Research For Automotive Applications

2000-03-06
2000-01-1101
Extensive research has been carried out worldwide to find better plastic fuel barrier materials to meet increasingly stringent requirements due both to more restrictive emissions legislation and to the fact that widely different gasoline compositions are being used. This review accounts for the most recent progress in the field. Starting from a discussion of the fundamental aspects on permeation through polymer media, it also highlights current advancement in the areas of chemical surface treatment, multi-layered assembling and blending.
Technical Paper

Wicking Fiber Chemisorption for Air Quality Improvement

1997-02-24
970555
The removal of toxic, corrosive, irritant, and odorous gases is a key strategy in improving air quality in any closed space. The technologies of granulated activated carbon or chemically impregnated dry media are commonly employed to address this issue. Both of these methods have their limitations in manufacturability, volume of space, and/or pressure drop associated with use in a given application. A new air quality technology has been developed which integrates liquid based chemisorption gas treatment with a shaped fiber media carrier. The patented wicking fiber shape holds more than its own weight in active reagents within intra-fiber channels. While the liquid volume is captured and retained through capillary action, a large surface area of the chemisorptive liquid is presented to the air flow for reaction and neutralization of the target contaminant gases. The wicking fibers may be implemented as fiber bundles, woven materials, or as non-wovens.
X