Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Recovering Energy from the Diesel Engine Exhaust Using Mechanical and Electrical Turbocompounding

2007-04-16
2007-01-1563
Considering future emission legislation and the global thermal problem, two are the main issues that are of specific concern for the future of the diesel engine, specific gaseous pollutants and CO2 emissions. Both parameters are related to engine bsfc consumption directly or indirectly. The last is becoming even more important considering current fuel prices and the projection for the future indicating a trend for increasing fuel prices. The last decade significant improvement have been accomplished in the field of diesel engine efficiency that has resulted to considerable reduction of engine bsfc. It is obvious that despite improvements in diesel engine efficiency still a considerable amount of energy is rejected to the environment through the exhaust gas. Approximately 30-40% of the energy supplied by the fuel is rejected to the ambience.
Technical Paper

Description of in-Cylinder Combustion Processes in HCCI Engines Using a Multi-Zone Model

2005-04-11
2005-01-0171
In the present work, a multi-zone model is presented for the simulation of HCCI engines. This model is an improvement of a previous one developed by the authors. The present model describes the combustion, heat and mass transfer processes for the closed part of the engine cycle, i.e. compression, combustion and expansion. The zones occupy geometrical positions within the engine cylinder and exchange heat and mass throughout the compression and expansion strokes, based on their spatial configuration. Heat exchange is considered between zones and to the cylinder wall. A phenomenological model has been developed to describe mass exchange between zones and the flow of a portion of the in-cylinder mixture in and out of the crevice region. The crevice flow is a new feature and is included in the present model since the crevice regions are considered to contribute to unburned HC emissions. Another new feature is the incorporation of chemical kinetics, based on combustion chemistry reactions.
Technical Paper

Theoretical Study Concerning the Effect of Oxygenated Fuels on DI Diesel Engine Performance and Emissions

2004-06-08
2004-01-1838
Diesel engine manufacturers have succeeded in developing engines with high power concentration and thermal efficiency without disregarding to comply with the continuous stringent emission regulations. Nowadays, several techniques such as injection control strategies, EGR and exhaust after treatment devices have been used to reduce diesel emissions. However, emission control alternatives are often accompanied by fuel consumption or cost penalties and also, the request for improving the pollutant emissions behavior of the existing diesel vehicle fleet has become mandatory. Thus, research scientists and engineers have focused also on the area of fuel composition for the reduction of pollutant emissions. Of major importance seems to be the use of oxygenated additives to reduce particulate emissions. According to recent studies, soot emissions are decreased following the increase of oxygen percentage.
Technical Paper

Experimental Investigation to Specify the Effect of Oxygenated Additive Content and Type on DI Diesel Engine Performance and Emissions

2004-03-08
2004-01-0097
The reduction of brake specific consumption and pollutant emissions are issued as future challenges to diesel engine designers due to the depletion of fossil fuel reserves and to the continuous suppression of emission regulations. These mandates have prompted the automotive industry to couple the development of combustion systems in modern diesel engines with an adequate reformulation of diesel fuels and have stirred interest in the development of “clean” diesel fuels. The use of oxygenated fuels seems to be a promising solution towards reducing particulate emissions in existing and future diesel motor vehicles. The prospective of minimizing particulate emissions with small fuel consumption penalties seems to be quite attractive in the case of biodiesel fuels, which are considered as an alternative power source. Studies conducted in diffusion flames and compression ignition engines have shown a reduction of soot with increasing oxygen percentage.
Technical Paper

Development of a New Multi-Zone Model for the Description of Physical Processes in HCCI Engines

2004-03-08
2004-01-0562
Homogeneous Charge Compression Ignition (HCCI) engines have the potential of reducing NOx emissions as compared to conventional Diesel or SI engines. Soot emissions are also very low due to the premixed nature of combustion. However, the unburned hydrocarbon emissions are relatively high and the same holds for CO emissions. The formation of these pollutants, for a given fuel, is strongly affected by the temperature distribution as well as by the charge motion within the engine cylinder. The foregoing physical mechanisms determine the local ignition timing and burning rate of the charge affecting engine efficiency, performance and stability. Obviously the success of any model describing HCCI combustion depends on its ability to describe adequately both the chemistry of combustion and the physical phenomena, i.e. heat and mass transfer within the cylinder charge. In the present study a multi-zone model is developed to describe the heat and mass transfer mechanism within the cylinder.
Technical Paper

Application and Evaluation of a Detailed Friction Model on a DI Diesel Engine with Extremely High Peak Combustion Pressures

2002-03-04
2002-01-0068
During the past years, extensive research efforts have led to the development of diesel engines with significantly improved power concentration and fuel efficiency as compared to the past. But unfortunately, the increase of engine thermal efficiency is accompanied by a sharp increase of peak cylinder pressure. At the moment, peak pressures in the range of 230-240 bar have been reported. Naturally, a question remains as to whether such increased peak pressures could have an overall detrimental impact on mechanical efficiency. Initially, it was expected that these would have a negative impact and this was the motive for conducting the present work and developing a detailed friction model. Up to now, various correlations have been proposed that provide the friction mean effective pressure as a function of engine speed and load mainly, neglecting the effect of peak pressure or using data up to 130-140 bar.
Technical Paper

Theoretical and Experimental Investigation of a Direct Injection Dual Fuel Diesel-Natural Gas Engine

2002-03-04
2002-01-0868
The compression ignition engine of the dual fuel type has been employed in a wide range of applications to utilize various gaseous fuel resources while minimizing soot and oxides of nitrogen emissions without excessive increase in cost from that of conventional direct injection diesel engines. The use of natural gas as a supplement for liquid diesel fuel could be a solution towards the efforts of an economical and clean burning operation. The high auto-ignition temperature of natural gas is a serious advantage since the compression ratio of most conventional diesel engines can be maintained. In the present work a comparison between experimental and theoretical results is presented under dual fuel operation. For the theoretical investigation a computer simulation model has been developed which simulates the gaseous fuel combustion processes in dual fuel engines.
Technical Paper

Using Advanced Injection Timing and EGR to Improve DI Diesel Engine Efficiency at Acceptable NO and Soot Levels

2001-03-05
2001-01-0199
The direct injection diesel engine is one of the most efficient thermal engines known to man. For this reason DI diesel engines are widely used for heavy-duty applications and especially for the propulsion of trucks. Even though the efficiency of these engines is currently at a high level there still exist possibilities for further improvement. One way to accomplish this is by increasing the injection timing which usually improves, depending on the operating conditions, the indicated efficiency of the engine. On the other hand advanced injection timing has a negative effect on peak pressure causing a serious increase of its value, a negative effect on NO emissions which are also seriously increased and a positive effect on Soot emissions which are reduced. In the present work a theoretical and experimental investigation is presented to determine the effect of more advanced injection timing on engine performance and pollutant emissions.
Technical Paper

The Effect of EGR on the Performance and Pollutant Emissions of Heavy Duty Diesel Engines Using Constant and Variable AFR

2001-03-05
2001-01-0198
Pollutant emissions and specifically NO and soot are one of the most important problems that engineers have to face when developing heavy duty DI diesel engines. Two main strategies exist as options for their control, reduction inside the engine cylinder using advanced combustion and fuel injection technologies and use of after-treatment systems. In the present work it is examined the use of EGR to control the formation of NO inside the cylinder of an engine with extremely high peak pressure. The work is applied on a single cylinder truck test engine developed under a project funded by the European Community focusing on the improvement of heavy duty DI diesel engine efficiency using increased injection timing. Use is made of a simulation model to predict the effect of more advanced injection timing on engine performance and emissions. The model has been modified to include the effect of EGR used to c ontrol the formation of NO which is considerably increased at high injection timings.
Technical Paper

Application of a Multi-Zone Combustion Model for the Prediction of Large Scale Marine Diesel Engines Performance and Pollutants Emissions

1999-03-01
1999-01-0227
In the present work a multi-zone combustion model, initially developed for naturally aspirated, high-speed, direct injection diesel engines, is used for studying the performance and emission characteristics of large scale, slow-speed marine diesel engines. Up to now pollutant emissions was not considered a problem in the field of marine engines, since no specific legislation existed. However, the International Maritime Organization (IMO) is forwarding a legislation that will be applicable in the next years concerning soot and nitric oxide (NO) emissions. This legislation will make it impossible for vessels to enter the native waters into countries where this legislation applies. Due to this fact, engine manufacturers are making serious efforts to design new engine builds with reduced soot and nitric oxide emissions using new designs and exhaust gas aftertreatment systems.
Technical Paper

Modeling the Structural Thermal Response of an Air-Cooled Diesel Engine under Transient Operation Including a Detailed Thermodynamic Description of Boundary Conditions

1998-02-23
981024
A comprehensive structural analysis simulation model is used for describing the thermal condition of a four-stroke, air-cooled, DI diesel engine under steady and transient operation. Two- and three- dimensional finite element analyses are implemented for the representation of the complex geometry metal components (piston, liner, cylinder head), in a way that the temperature and heat flux variations are calculated during any transient event. A detailed thermodynamic simulation model of engine operation is utilized for the determination of boundary conditions on the combustion chamber sides of each component. During an engine transient, processing of experimental cylinder pressure diagrams on a cycle to cycle basis resulted in the estimation of heat resease rate and boundary conditions (gas temperature, heat transfer coefficient) variation from the initial to the final engine thermodynamic state. Consequently, the power and specific fuel consumption curves can be accurately determined.
X