Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Evaluation of NOx Storage Catalysts for Lean Burn Gasoline Fueled Passenger Cars

1997-02-24
970746
Engine and laboratory tests were carried out to examine the performance of NOx adsorption catalysts for gasoline lean burn engines in fresh and aged condition. The results show that fresh NOx adsorption catalysts have the potential to meet EURO III emission standards. However, to accomplish these the fuel must contain a low sulfur concentration and the engine must be tuned to optimize the efficiency of the catalyst. After engine or furnace aging upto 750°C the catalyst shows some loss of NOx adsorption efficiency. This deterioration can be offset somewhat by increasing the frequency of lean/rich switching of the engine. Temperatures higher than 750°C may cause an irreversible destruction of the NOx, storage features while the three-way activity of the catalyst remains intact or even may improve. With reference to several physicochemical investigations it is believed that the detrimental effect of catalyst aging is attributed to two different deactivation modes.
Technical Paper

Evaluation of NOx Storage Catalysts as an Effective System for NOx Removal from the Exhaust Gas of Leanburn Gasoline Engines

1995-10-01
952490
One possibility to improve the fuel economy of SI-engines is to run the engine with a lean air-fuel-ratio (AFR). Hydrocarbon and carbon monoxide after-treatment has been proven under lean operation, but NOx-control remains a challenge to catalyst and car manufacturers. One strategy that is being considered is to run the engine lean with occasional operation at stoichiometry. This would be in conjunction with a three-way-catalyst (TWC) to achieve stoichiometric conversion of the three main pollutants in the normal way and a NOx trap. The NOx trap stores NOx under lean operation to be released and reduced under rich conditions. The trap also functions as a TWC and has good HC and CO conversion at both lean and stoichiometric AFR's. Under lean conditions NO is oxidised to NO2 on Pt which is then adsorbed on an oxide surface. Typical adsorbent materials include oxides of potassium, calcium, zirconium, strontium, lanthanum, cerium and barium.
X