Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

A Simulation Model for a High Pressure Injection Systems

1997-05-01
971595
Pollutant emissions from D.I. Diesel engines strongly depend on injection system characteristics and mainly on injection pressure and timing. In the latest years some solutions have been proposed based on very high fuel pressure values (up to 150 MPa). Among them, the so called “Common rail” system configuration, being able to electronically control needle lift and injection pressure, seems to be particularly promising. Much experimental and theoretical work has been done to improve system performance for automotive applications. With the aim of investigating the influence of some details of geometrical configuration on the injector operating mode, a mathematical model able to describe the pressure-time history in any section of the delivery pipe and the fuel injection rate through the nozzle has been developed, based on a semi-implicit finite volumes approach. The computed results have been compared with experimental data provided by the Institut Français du Pétrole.
Technical Paper

Modeling Atomization and Break Up in High-Pressure Diesel Sprays

1997-02-24
970881
Computation of high pressure Diesel injection requires improvement of present spray atomization and droplet breakup models. The surface wave instability atomization (Wave) model of Reitz [2] has been coupled to a new breakup model (FIPA) which is based on the experimental correlations of Pilch et al.[3]. It has been integrated in the 3D KMB code [1] derived from the Kiva 2 code [4] of Los Alamos already including a stochastic Lagrangian description of sprays. The droplet breakup FIPA model was first fitted and validated using the monodisperse drop breakup experiments of Liu and Reitz [5]. The response of the modified spray model including the global Wave-FIPA breakup model is compared to well characterized data obtained in a high pressure and temperature vessel. This vessel is fitted with a common-rail injection system with a single hole injector tip.
X