Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Experimental Investigation into the Temperature and Heat Transfer Distribution around Air-Cooled Cylinders

2006-11-13
2006-32-0039
This paper describes an experimental investigation into the surface heat transfer coefficient of finned metal cylinders in a free air stream. Ten cylinders were tested with four different fin pitches and five different fin lengths. The cylinders and their fins were designed to be representative of those found on a motorcycle engine with an external cylinder diameter of 100mm and fin lengths of 10 to 50mm. The fins of each cylinder were gravity die cast in aluminium alloy. Each cylinder was electrically heated and mounted in a wind tunnel which subjected it to a range of air speeds between 2 and 20 m/s. The surface heat transfer coefficient, h, was found primarily to be a function of the air speed and the fin separation, with fin length having a lesser effect. In addition to the determination of an overall heat transfer coefficient, the distribution of cooling around the circumference of each cylinder was also studied.
Technical Paper

Experimental Apparatus for the PIV Validation of Gas-Dynamic and CFD Engine Models

2006-11-13
2006-32-0019
The single shot apparatus creates a pressure wave (compression or rarefaction) by releasing a pressure or vacuum from a blowdown cylinder. The wave is contrived to be representative of cylinder blowdown or the suction wave that emanates from an engine intake valve during induction. Generated waves may be fired into a quiescent pipe or system of pipes that represent the ducts found on an engine. The most significant features that distinguish the new apparatus from any previous are that it uses a poppet valve to release the wave and that the apparatus is largely automatic, enabling the generation of a new wave every 15 seconds or so. The particular version of the apparatus described here has been conceived to allow a low speed background flow to be maintained in the pipe system between waves. The purpose of this is to allow microscopic particles to be kept in suspension in the air to facilitate flow studies using Particle Image Velocimetry (PIV) or Laser Doppler Anemometry (LDA).
Technical Paper

Experimental Investigation into the Free Air-Cooling of Air-Cooled Cylinders

2003-09-16
2003-32-0034
This paper describes an experimental investigation into the surface heat transfer coefficient of finned metal cylinders in a free air stream. Eight cast aluminium alloy cylinders were tested with four different fin pitches and five different fin lengths. The cylinders and their fins were designed to be representative of those found on a motorcycle engine. Each electrically heated cylinder was mounted in a wind tunnel and subjected to a range of air speeds between 2 and 20 m/s. The surface heat transfer coefficient, h, was found primarily to be a function of the air speed and the fin separation, with fin length having a lesser effect. The coefficient increases with airspeed and as the fins are separated or shortened. It was also noted that a limiting value of coefficient exists, influenced only by airspeed. Above the limiting value the surface heat transfer could not be increased by further separation of the fins or reduction in their length.
Technical Paper

An Experimental Investigation into the Effect of Bore/Stroke Ratio on a Simple Two-Stroke Cycle Engine

1999-09-28
1999-01-3342
This paper describes an experimental investigation into the effect of bore/stroke ratio on a simple two-stroke engine. This was achieved with a special purpose engine of modular design. The engine allowed four combinations of bore and stroke to be contrived to yield a common swept volume of 400 cm3 with bore/stroke ratios of: 0.8, 1.0, 1.2 and 1.4. Other factors that might affect engine performance were standardised: the exhaust, intake and ignition systems were common, the combustion chamber designs were similar, scavenge characteristics were similar, port timings and time-areas were kept the same, and cylinder and crankcase compression ratios were also kept the same. The most important conclusions were: Engine power was greatest with the compromise bore/stroke ratio of 1.0 or 1.2. Combustion efficiency tended to decrease with increasing bore/stroke ratio. Mechanical efficiency tended to increase with increasing bore/stroke ratio.
Technical Paper

The Potential of 50cc Four-Stroke Engines for Moped Applications

1998-09-14
982050
Due to increasingly stringent emissions legislation the four-stroke engine is beginning to replace the two-stroke engine for motorcycle and scooter applications over 50cc. However, because of its comparatively poor performance, the four-stroke unit is not replacing the two-stroke for moped applications which are restricted to 50cc. To meet forthcoming European legislation the two-stroke moped engine requires an exhaust catalyst which presents considerable durability problems when applied to this type of engine. This would not be the case with a four-stroke unit, so if its performance could be improved it would be an attractive alternative. This paper illustrates the difficulties facing four-stroke engines of this size, the improvements required, the benefits (and problems) of a multi-valve approach and possible means of improving performance.
X