Refine Your Search

Search Results

Author:
Viewing 1 to 9 of 9
Technical Paper

Analysis of the Steady Flow Characteristics through a Poppet Valve

2004-03-08
2004-01-1676
This paper describes the flow characteristics in the near throat region of a poppet valve under steady flow conditions. An experimental and theoretical procedure was undertaken to determine the total pressure at the assumed throat region of the valve, and also at a downstream location. Experiments of this type can be used to accurately determine the flow performance of a particular induction system. The static pressure recovery was calculated from the near throat region of the valve to the downstream location and was shown to be dependent on valve lift. Total pressure profiles suggest that for this particular induction system, the majority of pressure loss occurs downstream of the valve for lift/diameter ratios up to 0.1, and upstream of the valve for lift/diameter ratios greater than 0.1.
Technical Paper

Prediction of Formula 1 Engine and Airbox Performance using Coupled Virtual 4-Stroke and CFD Simulations

2002-12-02
2002-01-3318
This paper describes a technique whereby race car airbox performance can be assessed directly in terms of predicted engine performance by coupling a one-dimensional engine model on a timestep-by-timestep basis to a three-dimensional computational fluid dynamics (CFD) model of an airbox. A high-performance three-litre V10 engine was modelled using Virtual 4-Stroke unsteady gas dynamics engine simulation software, while two airbox configurations, representative of those used in FIA Formula 1 (F1), were modelled using general purpose CFD software. Results are presented that compare predicted engine performance for the two airbox geometries considered in the coupled simulations. Individual cylinder performance values are also presented and these show significant variations across the ten cylinders for each airbox simulated.
Technical Paper

Computer Simulation of the Performance of a 1.9 Litre Direct Injection Diesel Engine

2002-03-04
2002-01-0070
Recent environmental legislation to reduce emissions and improve efficiency means that there is a real need for improved thermodynamic performance models for the simulation of direct-injection, turbocharged diesel engines, which are becoming increasingly popular in the automotive sector. An accurate engine performance simulation software package (VIRTUAL 4-STROKE) is employed to model a benchmark automotive 1.9-litre Turbocharged Direct Injection (TDI) diesel engine. The accuracy of this model is scrutinised against actual test results from the engine. This validation includes comparisons of engine performance characteristics and also instantaneous gas dynamic and thermodynamic behaviour in the engine cylinders, turbocharger and ducting. It is seen that there is excellent agreement in all of these areas.
Technical Paper

MAPS OF DISCHARGE COEFFICIENTS FOR VALVES, PORTS AND THROTTLES

2001-12-01
2001-01-1798
The paper discusses the application of maps of measured discharge coefficients for poppet valves, cylinder ports, and in-pipe throttles within a theoretical simulation of the unsteady gas flow through an internal combustion engine. The maps provided cover both inflow and outflow at the discontinuity being discussed and are displayed as contour maps of the discharge coefficient as some function of the geometrical flow area of that discontinuity and of the pressure ratio across it up to a maximum value of 2.0. An engine simulation package is used for both a four-stroke and a two-stroke engine to determine the typical pressure ratio and area ratio characteristics which pertain at all such discontinuities at representative engine speed and load conditions.
Technical Paper

EXHAUST TUNING ON A FOUR-STROKE ENGINE; EXPERIMENTATION AND SIMULATION

2001-12-01
2001-01-1797
A Yamaha YZ400, 5-valve, 4-stroke cycle, motocross racing, motorcycle engine is instrumented to provide pressure diagrams in the exhaust system which are recorded over the usable engine speed range at full throttle from 5000 rpm to 11000 rpm. The engine produces a maximum of some 34 kW (46 hp) power output. The production muffler-ended exhaust system is replaced with two alternative and more highly-tuned exhaust systems, namely a straight pipe and a straight pipe and diffuser. The complete engine geometry together with these two exhaust systems is simulated using an engine simulation software package (VIRTUAL 4-STROKE) and the experimentally-recorded exhaust pressure diagrams and performance characteristics of power, torque, etc., are compared with the predictions of the theoretical simulation. The variation of exhaust system produces differing performance characteristics whose origins the measured pressure diagrams and recorded performance characteristics struggle to explain.
Technical Paper

Correlation of Simulated and Measured Noise Emission Using a Combined 1D/3D Computational Technique

1997-02-24
970801
A combined one-dimensional, multi-dimensional computational fluid dynamic modelling technique has been developed for analysis of unsteady gas dynamic flow through automotive mufflers. The technique facilitates assessment of complex designs in terms of back-pressure and noise attenuation. The methodology has been validated on a number of common exhaust muffler arrangements over a wide range of test conditions. Comparison between measured and simulated data has been conducted on a Single-Pulse (SP) rig for detailed unsteady gas dynamic analysis and a Rotary-Valve (RV) rig in conjunction with an anechoic chamber for noise attenuation analysis. Results obtained on both experimental arrangements exhibit excellent gas dynamic and acoustic correlation. The technique should allow optimisation of a wide variety of potential muffler designs prior to prototype manufacture.
Technical Paper

Correlation of Simulated and Measured Noise Emissions and Unsteady Gas Dynamic Flow from Engine Ducting

1996-08-01
961806
One-dimensional (1-D) unsteady gas dynamic models of a number of common muffler (or silencer) elements have been incorporated into a1-D simulation code to predict the impact of the muffler on the gas dynamics within the overall system and the radiated Sound Pressure Level (SPL) noise spectrum in free-space. Correlation with measured data has been achieved using a Single-Pulse rig for detailed unsteady gas dynamic analysis and a Rotary-Valve rig in conjunction with an anechoic chamber for noise spectra analysis. The results obtained show good agreement both gas dynamically and acoustically. The incorporation of these models into a full 1-D engine simulation code should facilitate the rapid assessment of various muffler designs prior to prototype manufacture and testing.
Technical Paper

Coefficients of Discharge at the Aperatures of Engines

1995-09-01
952138
This paper reports on the experimental evaluation of certain aspects concerning the mathematical modelling of pressure wave propagation in engine ducting. A particular aspect is the coefficient of discharge of the various ports, valves or apertures of the ducting connected to the cylinder of an engine or to the atmosphere. The traditional method for the deduction of the coefficients of discharge employs steady flow experimentation. While the traditional experimental method may well be totally adequate, it is postulated in this paper that the traditional theoretical approach to the deduction of the discharge coefficient from the measured data leads to serious inaccuracies if incorporated within an engine simulation by computer. An accurate theoretical method for the calculation of the discharge coefficient from measured data is proposed.
Technical Paper

Experimental Validation of 1-D Modelling Codes for a Pipe System Containing Area Discontinuities

1995-02-01
950276
This paper reports on the first phase of an experimental evaluation of four different methods for the mathematical modelling of unsteady gas flow in a pipe system containing an area discontinuity. The four methods under investigation are the non-homentropic method of characteristics, the two-step Lax-Wendroff method with flux corrected transport, the Harten-Lax-Leer upstream difference method and the GPB finite system method. The experimentation is conducted using the QUB SP (single-pulse) pressure wave generator consisting of a cylinder, connected via a sliding valve to a long duct. The pressure waves it creates closely mimic those to be found in i.c. engines. The initial cylinder pressure may be set to simulate either an induction or an exhaust process. Various ducts are attached to the pressure wave generator to simulate both sudden and gradual area changes. Each duct is sufficiently long as to permit pressure wave observation without superposition effects.
X