Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Measured Emissions of Small Engines under Steady State and Transient Operation

1994-09-01
941806
The exhaust emissions of off-road and utility engines have recently come under increasingly thorough scrutiny and are now becoming the subject of federal regulations. While the most straightforward emissions guidelines relate to steady-state engine performance, it is well known that duty cycles of many small engines have a transient content and that its significance can vary strongly from application to application. Hence, it is important to examine how measured emissions change when the transient content of a test cycle is varied, and what kinds of steady-state and transient test cycles might realistically imitate operational conditions. These questions have been addressed in an experimental study in which several small two- and four-stroke engines have been tested under steady state and transient cycles. The same tests were also carried out when these engines had been adjusted to operate at leaner air-fuel ratios, as might be required by forthcoming regulations.
Technical Paper

Reactor Studies for Exhaust Oxidation Rates

1973-02-01
730203
A laboratory test reactor has been used to determine the rates of oxidation of carbon monoxide (CO), hydrocarbons (HCs) as a class, and hydrogen (H2). The feed was supplied from the exhaust of a single-cylinder engine, with additions of H2 and CO in some runs. The test reactor was designed to be well mixed, and this was verified experimentally for mixing on macroscopic and microscopic scales. Wall effects were found to be unimportant. Kinetic data from 157 runs were correlated with global reaction rate expressions containing Arrhenius temperature dependence and power law concentration dependence. CO oxidation was found to be approximately 1/4 order in CO with an activation energy of 28,200 cal/g-mole. HC oxidation was found to be approximately 1/4 order in HC and 1/2 order in each of O2, CO, and NO with an activation energy of 29,800 cal/g-mole. H2 oxidation rates were not well correlated, but a zero-order rate with an activation energy of 52,000 cal/g-mole is reasonable.
Technical Paper

A DIGITAL COMPUTER SIMULATION FOR SPARK-IGNITED ENGINE CYCLES

1963-01-01
630076
A comprehensive cycle analysis has been developed for four-stroke spark-ignited engines from which the indicated performance of a single cylinder engine was computed with a reasonable degree of accuracy. The step-wise cycle calculations were made using a digital computer. This analysis took into account mixture composition, dissociation, combustion chamber shape (including spark plug location), flame propagation, heat transfer, piston motion, engine speed, spark advance, manifold pressure and temperature, and exhaust pressure. A correlation between the calculated and experimental performance is reported for one engine at a particular operating point. The calculated pressure-time diagram was in good agreement with the experimental one in many respects. The calculated peak pressure was 10 per cent lower and the thermal efficiency 0.8 per cent higher than the measured values. Thus this calculational procedure represents a significant improvement over constant volume cycle approximations.
X