Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

A Sensor Suite for Toeboard Three-Dimensional Deformation Measurement During Crash

2020-03-31
2019-22-0014
This paper presents the development of a sensor suite that is used to measure the toeboard threedimensional (3D) dynamic deformation during a crash test, along with the methodology to use the sensor suite for toeboard measurement. The sensor suite consists of three high-speed cameras, which are firmly connected through a rigid metal frame. Two cameras, facing directly towards the toeboard, measure the shape of the toeboard through stereovision. The third camera, facing the ground, is equipped with a three-axis gyroscope and a three-axis accelerometer and localizes the sensor suite globally for removing the vibration of the sensor suite. The sensor suite was mounted onto the car through car seat mounting bolt holes, and a hole was made on the floor to let the downward camera see the ground. A pipeline using the data collected by the sensor suite is also introduced in this paper.
Technical Paper

Optimizing Occupant Restraint Systems for Tactical Vehicles in Frontal Crashes

2018-04-03
2018-01-0621
The objective of this study was to optimize the occupant restraint systems for a light tactical vehicle in frontal crashes. A combination of sled testing and computational modeling were performed to find the optimal seatbelt and airbag designs for protecting occupants represented by three size of ATDs and two military gear configurations. This study started with 20 sled frontal crash tests to setup the baseline performance of existing seatbelts, which have been presented previously; followed by parametric computational simulations to find the best combinations of seatbelt and airbag designs for different sizes of ATDs and military gear configurations involving both driver and passengers. Then 12 sled tests were conducted with the simulation-recommended restraint designs. The test results were further used to validate the models. Another series of computational simulations and 4 sled tests were performed to fine-tune the optimal restraint design solutions.
Technical Paper

Development, Evaluation, and Sensitivity Analysis of Parametric Finite Element Whole-Body Human Models in Side Impacts

2016-11-07
2016-22-0014
Occupant stature and body shape may have significant effects on injury risks in motor vehicle crashes, but the current finite element (FE) human body models (HBMs) only represent occupants with a few sizes and shapes. Our recent studies have demonstrated that, by using a mesh morphing method, parametric FE HBMs can be rapidly developed for representing a diverse population. However, the biofidelity of those models across a wide range of human attributes has not been established. Therefore, the objectives of this study are 1) to evaluate the accuracy of HBMs considering subject-specific geometry information, and 2) to apply the parametric HBMs in a sensitivity analysis for identifying the specific parameters affecting body responses in side impact conditions. Four side-impact tests with two male post-mortem human subjects (PMHSs) were selected to evaluate the accuracy of the geometry and impact responses of the morphed HBMs.
X