Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Predicting the Port Air Mass Flow of SI Engines in Air/Fuel Ratio Control Applications

2000-03-06
2000-01-0260
With the tightening of exhaust emission standards, wide bandwidth control of the air/fuel ratio (AFR) of spark ignition engines has attracted increased interest recently. Unfortunately, time delays associated with engine operation (mainly injection delays and transport delays from intake to exhaust) impose serious limitations to the achievable control bandwidth. With a proper choice of sensors and actuators, these limitations can be minimized provided the port air mass flow can be accurately predicted ahead in time. While the main objective of this work is to propose a complete AFR controller, the main focus is on the problems associated with port air mass flow prediction.
Technical Paper

Avoiding Signal Aliasing in Event Based Engine Control

2000-03-06
2000-01-0268
Many modern control strategies for engine control are based on event based sampling. Operating the control strategy in the event domain makes it possible to obtain samples at specific crank shaft angles in the engine cycle, which is often desirable for certain control strategies. One of the biggest disadvantages involved with event based strategies is signal aliasing at low engine speeds or a high computational burden at higher engine speeds. This paper presents an easy solution to the aliasing problem above. If the data between the event based samples is stored using a time based strategy, it is shown here that a subsequent treatment of the sampled data as a time series together with a suitable low pass filter structure can avoid aliasing.
Technical Paper

Towards Robust H-infinity Control of an SI Engine's Air/Fuel Ratio

1999-03-01
1999-01-0854
Long term stoichiometric Air/Fuel Ratio (AFR) control of an SI engine is at the present mainly maintained by table mapping of the engine's fresh air intake as a function of the engine operating point. In order to reduce a stationary error in the AFR to zero the table based control normally works in conjunction with a PI feedback from a HEGO sensor. The effective bandwidth of this feedback loop is quite small and seldom exceeds 2 Hz. This is altogether too small for accurate transient AFR control. This paper presents a new λ (normalized Air/Fuel Ratio) control methodology (H∞ control) which has a somewhat larger bandwidth and can guarantee robustness with respect to selected engine variable and parameter variations.
X