Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Improving the Sound Transmission Loss of an Aircraft Ceiling Panel by Locally Resonant Metamaterials

2022-06-15
2022-01-0960
Lightweight structures and designs have been widely used in a number of engineered structures due to ecological and environmental aspects. Nonetheless, lightweight structures typically experience a reduced noise and vibration reduction performance as a consequence of their increased stiffness-to-mass-ratio. To enhance it, novel low mass and compact countermeasures are often sought to address the challenges of achieving not only a good Noise, Vibrations and Harshness (NVH) reduction performance but also maintaining a lightweight design. Recently, locally resonant metamaterials have emerged and shown potential as a lightweight noise and vibration solution with a superior performance in tunable frequency ranges, known as stop bands i.e. frequency regions where free wave propagation is not allowed. These can be achieved by assembling resonant elements that are tuned to the targeted frequency range onto a host structure.
Technical Paper

Optimization of Noise Control Treatments for Aircraft’s Sidewalls

2016-06-15
2016-01-1850
In passenger aircraft the most important noise control treatment is the primary insulation attached to the fuselage. Next to its acoustic properties the primary insulation main purpose is the thermal insulation and the minimization of condensed water. In general it consists of fibrous materials like glass wool wrapped in a thin foil. Due to stringent flame, smoke and toxicity requirements the amount of available materials is limited. Furthermore the amount of material installed in aircraft per year is much smaller compared to needs in the automotive industry. Therefore the best lay-up of the available materials is needed in terms of acoustics. This paper presents a tool for numerical optimization of the sound insulation package. To find an improved insulation the simulation tool is used in interaction with a measurement database. The databank is constructed from aircraft grade materials such as fibrous materials, foams, resistive screens and impervious heavy layers.
Technical Paper

Car Driver Inactivations in Real-World Precrash Phase

2000-11-01
2000-01-C007
This study discusses the potential influence of non-driving tasks on the performance of drivers and on the increased risk of involvement in a traffic accident. It is based upon a review of the literature and results of two research projects carried out in France. As a complement to experiments on avoidance maneuvers in a simulated accident situation, subjects were asked to rate both their frequencies and subjective risk level for 18 actions involving secondary tasks such as using a phone when driving. Answers given by French subjects are compared to those given by Japanese subjects. It was clear that actions considered as risky are seldom declared and that secondary tasks are often considered as risky whenever they require hand or visual distraction. The accident sample contains several hundred personal injury car crashes, studied in-depth and on the scene from 1995 to 1999 by a team of accidentologists including a psychologist.
Technical Paper

Real-world car accident reconstruction methods for crash avoidance system research

2000-06-12
2000-05-0221
Development of crash avoidance systems and active safety systems must not be only based on experimental knowledge. The goal is to provide an efficient answer to still unsolved severe real-world car crashes which occur despite enhanced passive safety devices. This requires to know precisely the pre-crash conditions during about 3 to 10 seconds before impact. The paper describes the multidisciplinary systemic approach leading to the comprehensive methodology used in accident reconstruction in order to determine the best scenario, and to assess initial car speeds, paths and events in the different phases of the accident. This has already been carried out for about 400 car crashes with car occupant injuries (including 6% fatal and 10% severely injured). The necessity of collecting data on the spot of the crash scene is highlighted. Three well-trained investigators are involved.
Technical Paper

Exploration of Biomechanical Data Towards a Better Evaluation of Tolerance for Children Involved in Automotive Accidents

1984-02-01
840530
Children are often involved in automotive accidents especially as car occupants. Their protection presents particular problems in the first years of life, due to large changes in their morphology and behaviour. The aim of this paper is to contribute towards the development of a better evaluation of the child's tolerance to impact. Car accident investigations are analysed to bring information on injury mechanisms and severities. Free fall accidents are other sources of data used to correlate injuries with impact conditions. Theoretical analysis is considered for extrapolation of experimental data obtained from adult humans and animal surrogates. Then crash simulations with child cadavers and primates restrained in child seats are analysed and the estimation of tolerance levels for children is discussed.
X