Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

An Integrated Diesel Engine ART-EGR System for Particulate/NOx Control Using Engine Sensory Inputs

1997-02-24
970477
New developments for optimized control of Aerodynamically Regenerated Traps (ART) - Exhaust Gas Recirculation (EGR) integrated systems for diesel engines are presented herein. Such systems employ high-efficiency ceramic monolith filters to retain 99% of the emitted particulates. Regeneration is achieved periodically by short pulses of compressed air, flowing in the opposite direction to the exhaust. The soot is collected in a chamber, outside of the monolith, where it is oxidized with an electric burner. A fraction of the filtered exhaust is returned to the engine and this reduces NOx emissions, typically, by more than 50% at 18% EGR. However, since the amount of EGR, the frequency of regeneration and the frequency and duration of burning have a bearing on the fuel consumption of the engine, their optimization is imperative. Thus, provisions were made to collect intelligent information, leading to continuous assessment of the engine performance and fuel economy.
Technical Paper

An Optimization Study on the Control of NOx and Particulate Emissions from Diesel Engines

1996-02-01
960473
This is an optimization study on the use of filtered exhaust gas recirculation (EGR) to reduce the NO emissions of diesel engines. Control of the particulate emissions and provisions for filtered EGR were achieved by an Aerodynamically Regenerated Trap (ART) with collection efficiencies in the order of 99%. The amount of EGR was regulated to provide for substantial NO reduction, without unacceptably decreasing the thermal efficiency of the engine or increasing the CO emissions. EGR regulation was accomplished by monitoring the injection pump setting which was correlated to the fuel flow rate, the speed of the engine, the amount of EGR flow, and the ambient air temperature. Through these parameters, the mixture strength expressed as the equivalence ratio, ϕ, was calculated and related to the power output of the engine. Thus, a map of engine performance parameters was generated and related to measured NO and CO emissions.
X