Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Design for Improvement in Steering Vibration Performance in a Passenger Vehicle

2017-03-28
2017-01-0439
In urban driving conditions, the steering vibration plays a major role for a customer, spending a significant amount of time behind the steering wheel. Considering the urban drive at Indian roads, 1000~1600rpm band becomes primary area of concern. In this paper, study has been conducted to define the target areas as well as its achievement in reference to given driving pattern on a front wheel powered passenger car for steering vibration. During the concept stage of vehicle development, a target characteristic of steering wheel vibration was defined based on the competitor model benchmarking and prior development experience. A correlated CAE model was prepared to evaluate the modification prior to prototype building and verification. Vibration level in all 3 degrees of freedom at the steering wheel location was measured in the initial vehicle prototypes and target areas of improvement are identified.
Technical Paper

Interior Noise Reduction in a Passenger Vehicle through Mode Modulation of Backdoor

2016-02-01
2016-28-0058
Inside cabin of a passenger car, low frequency booming noise still presents a major hurdle for NVH engineers to fine tune a vehicle. Low frequency booming noise is presently taken care with addition of mass damper and large reinforcements. These conventional countermeasures add weight to the vehicle as well as increase the overall production cost. The study presented in this paper proposes a countermeasure model that not only reduces the booming noise but also avoids any weight and cost addition. It has been focused for low frequency booming noise around 30 ∼ 40 Hz. Within the range mentioned, one of the major reasons for booming noise in hatchback models is the bending resonance of backdoor. By modifying the mode of the backdoor in such a manner that it cancels the effect of bending on the vehicle acoustic cavity, improvement can be achieved in terms of sound pressure level at the driver’s right ear location (DREL).
Technical Paper

Application and Development Challenges of Dynamic Damper in Cabin Booming Noise Elimination

2014-04-01
2014-01-0013
Automotive OEMs quest for vehicle body light weighting, increase in Fuel efficiency along with significant cut in the emissions pose significant challenges. Apart from the effect on vehicle handling, the reduction of vehicle weight also results in additional general requirements for acoustic measures as it is an important aspect that contributes to the comfort and the sound quality image of the vehicle, thus posing a unique challenge to body designers and NVH experts. Due to these conflicting objectives, accurate identification along with knowledge of the transfer paths of vibrations and noise in the vehicle is needed to facilitate measures for booming noise dampening and vehicle structure vibration amplitude. This paper focuses on the application of a unique design and development of vehicle body structure anti-vibration dynamic damper (DD), unique in its aspect in controlling booming noise generated at a specific RPM range.
Technical Paper

Study of Coupling Behavior of Acoustic Cavity Modes to Improve Booming Noise in Passenger Vehicles

2014-04-01
2014-01-1974
Interior sound quality is one of the significant factors contributing to the comfort level of the occupants of a passenger car. One of the major reasons for the deterioration of interior sound quality is the booming noise. Booming noise is a low frequency (20Hz∼300Hz) structure borne noise which occurs mainly due to the powertrain excitations or road excitations. Several methods have been developed over time to identify and troubleshoot the causes of booming noise [1]. In this paper an attempt has been made to understand the booming noise by analyzing structural (panels) and acoustic (cavity) modes. Both the structural modes and the acoustic modes of the vehicle cabin were measured experimentally on a B-segment hatchback vehicle using a novel approach and the coupled modes were identified.
Technical Paper

Characterization of Structure-Borne Road/Tire Noise Inside a Passenger Car Cabin Using Path Based Analysis

2013-11-27
2013-01-2858
Road/Tire noise is an important product quality criterion for passenger cars which are driving customers to decide upon the selection of a vehicle. Reduced engine noise and improvement in road conditions has resulted into more road/tire noise problem as average vehicle speed has gone up. Excitations from road surface travelling through the tire/suspension to vehicle body (structure-borne path) and air-pumping noise caused by tread patterns (air-borne paths) are the main contributor to tire noise issue inside the vehicle cabin [1]. A lot of emphasis is put on the component level design as well as its compliance with vehicle structure to reduce the cabin noise. The objective of this work is to establish a methodology for evaluating structure-borne road/tire noise by evaluating the tire structural behavior and its interface with the vehicle body and its suspension system and identifying the contributing critical paths.
Technical Paper

Integrated CAE & Physical Testing Approach to Optimize Vehicle Design - For Cabin Noise Reduction

2013-11-27
2013-01-2857
Structure borne noise is the major source of noise inside the vehicle compartment. Recently the quietness of the occupant cabin has become an important dimension to the quality of product. OEMs are finding it challenging to meet the customer expectations for “Powerful yet quiet” attribute. Several focused studies have been made to reduce the under hood component noise in automobiles. This paper summarizes the optimization of vibro-accoustic sensitivity (VAS) of the engine mounts in passenger car engine. The contribution of each engine mount on the structure-borne noise transfer inside the cabin is studied by conventional FRF and normal mode analysis using Nastran, along with physical testing validation. This paper emphasizes to reduce the structure borne noise with the focus on weight reduction of the body side engine mount.
Technical Paper

Numerical Modeling of Critical Path Contributions for NVH Prediction of Vehicle

2013-11-27
2013-01-2802
For any new vehicle development, NVH target setting is crucial activity. Structural modification are to be done in early design phase to improve cabin comfort by identifying the sensitive paths and taking appropriate countermeasures for reduction of noise or vibrations transmission to cabin. A benchmark vehicle is taken to define the target areas for next model development. Numerical computations with suitably modified virtual model are carried out to accelerate the development cycle. Transfer path analysis (TPA) is an established technique for estimation and ranking of individual low-frequency noise or vibration contributions via the different structural transmission paths from point coupled powertrain or wheel-suspensions to the vehicle body [1]. TPA technique can also be used to define the improvement targets for future vehicles.
Technical Paper

Development of a Quantification Methodology for Slosh Noise Associated with Dynamic Fuel Flow Behavior in Passenger Car Tank

2011-10-06
2011-28-0089
Fuel slosh noise has been important criteria in designing the fuel tank. Since the car manufacturers have tried to measure and reduce slosh noise of fuel tank, a requirement of direct quantification methods is felt. This paper presents a methodology to quantify the slosh noise in passenger car at various fuel level conditions. With enhanced awareness and demand for fuel efficient cars, weight reduction has become important that has led to move from steel tanks to plastic tanks. Also “Baffles” have been used for many years in fuel tanks to reduce the effect of the fuel sloshing that is additional weight in the tanks [1]. To evaluate the slosh performance of plastic tanks, study has been carried out to predict the dynamic behavior of the fuel inside a fuel tank during transient driving conditions, using a commercial CFD (Computational Fluid Dynamic) code Star CCM+.
Technical Paper

Reduction of Seat Back Vibrations in a Passenger Car- An Integrated CAE - Experimental Approach

2011-04-12
2011-01-0497
In the present automobile market, customers have put demand for smaller cars with better ride and comfort. For small diesel engine cars, where the comfort is known to be inferior to its gasoline siblings, the effect of engine excitation and road inputs has posed the problem of seat back vibrations. Low frequency vibrations are observed at irregular road inputs, which directly get transferred to the human body through the seat back resulting in fatigue and discomfort. This paper describes the use of testing and CAE in reducing the seat back vibrations. First step of the study includes the frequency response functions (FRF) of the seat frame and road data. The CAE model is validated with the test data and the problem areas are identified. The countermeasure design modifications in the seat frame structure are analyzed using CAE (Normal Mode Analysis). The feasible countermeasure action is road tested and clearly shows a reduction in the vibration levels coming on the seat back.
Technical Paper

CHARACTERISATION OF PASSENGER VEHICLE IN-CABIN NOISE USING OMA AND SOUND QUALITY TECHNIQUES - AN INTEGRATED APPROACH

2009-12-13
2009-28-0047
In the recent past, interior noise quality has developed into a decisive aspect for the evaluation of overall vehicle quality. The paper discusses the effect of structural modes of vibration caused in a passenger car during its operational conditions and its effect of noise inside the cabin. In order to characterize the body modes under road operation, OMA is used and the Interior noise quality of car cabin is judged by the Sound quality tools. Based on the jury evaluation, the problem is identified and problem area is identified with operational modal analysis techniques to take the countermeasure and verification of the study is done. The relation of body modes is established to overall cabin noise performance and improvements are checked with use of Modification Prediction tool after identifying the critical areas. This study is helpful in developing the new vehicle modal faster and also to analyze and to take countermeasure at earlier stages of developments.
X