Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

CALVIN: Winner of the Fourth Annual Unmanned Ground Vehicle Design Competition

1997-02-24
970174
The Unmanned Ground Vehicle Competition is jointly sponsored by the SAE, the Association for Unmanned Vehicle Systems (AUVS), and Oakland University. College teams, composed of both undergraduate and graduate students, build autonomous vehicles that compete by navigating a 139 meter outdoor obstacle course. The course, which includes a sand pit and a ramp, is defined by painted continuous or dashed boundary lines on grass and pavement. The obstacles are arbitrarily placed, multi-colored plastic-wrapped hay bales. The vehicles must be between 0.9 and 2.7 meters long and less than 1.5 meters wide. They must be either electric-motor or combustion-engine driven and must carry a 9 kilogram payload. All computational power, sensing and control equipment must be carried on board the vehicle. The technologies employed are applicable in Intelligent Transportation Systems (ITS).
Technical Paper

Impact of Automated Lane Change Assist on Energy Consumption

2020-04-14
2020-01-0082
This paper models adaptive cruise control combined with automated lane change assist to investigate the energy consumption improvements that such a system may provide compared to conventional adaptive cruise control. Automatically executing a lane change may improve efficiency, for example, when following a vehicle that is slowing to make a turn. Changing lanes while maintaining speed is hypothesized to be more efficient than staying in the same lane as the turning vehicle and reducing speed. The differences in such scenarios are simulated in a virtual environment using a cuboid model with idealized sensors. The ego-vehicle detects scenarios and performs a lane change to reduce or eliminate required speed changes. The results of the simulations compare the energy content of the resulting drive cycle as an idealized method to measure energy consumption for each cruise control strategy.
X