Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Interaction Between Aerodynamics and Suspension Behavior on Light Road Vehicles

2014-09-30
2014-36-0316
Nowadays, the influence of aerodynamics on vehicles capabilities is mostly studied in terms of energy efficiency; maximum speed; maximum linear accelerations; cooling capacity of brake systems; resistance and deformation of elements exposed to aerodynamic forces; stability during lateral wind and during braking for straight ahead maneuvers; noise caused by airflow; proper evacuation of exhaust gases and aesthetics of cars. Generally, a model for CFD analysis is used and six constant coefficients are determined. However, there is insufficient information about the interaction of vehicle aerodynamics with vehicle suspension and the effects that this interaction generates on the dynamic behavior of the vehicle. In this work this interaction is studied, and there is an analysis of how vehicle aerodynamic characteristics impact on suspension behavior and how suspension characteristics could diminish or amplify aerodynamic.
Technical Paper

Vehicle Drift Analysis using Functional Simulation and Statistical Tools

2013-10-07
2013-36-0325
The lateral drift of a vehicle while driving straight ahead has been a major concern of the OEMs on the South America market. Due to its natural way to evaluate and also to different types of roads on the market (roads with different types of bank angle), a vehicle with slight tendency to drift will certainly be a reason of customer complaint. Since such a vehicle dynamics property is very sensible to small variation of some parameters, such as road bank angle, alignment setting, etc, sometimes the subjective evaluation tends to become worthless due to the parameters control. In this scenario, simulation becomes important. As it is a quite difficult subject, since there is big influence of small parameters variation, the usage of statistical approach allow to obtain better understanding of the phenomenon. This work presents a statistical approach for simulation based on DOE analysis and Monte Carlo method.
X