Refine Your Search

Search Results

Author:
Viewing 1 to 9 of 9
Technical Paper

Modeling Chemistry in Lean NOx Traps Under Reducing Conditions

2006-10-16
2006-01-3446
A set of elementary surface reactions is proposed for modeling the chemistry in a lean NOx trap during regeneration (reduction of stored NOx). The proposed reaction mechanism can account for the observed product distribution from the trap over a range of temperatures and inlet gas compositions similar to those expected for realistic operation. The mechanism includes many reactions already discussed in the literature, together with some hypothesized reactions that are required to match observations from temperature programmed reactor experiments with a commercial lean NOx trap catalyst. Preliminary results indicate that the NOx trap regeneration and byproduct formation rates can be effectively captured by using a relatively compact set of elementary reactions.
Technical Paper

Key Characteristrics of the Sorption Process in Lean Nox Traps

2003-10-27
2003-01-3246
We study the NOx storage process in lean NOx traps using bench-flow experiments and simulated diesel exhaust. Given that formulation alone is an inadequate indicator of performance (due to the effects of manufacturing processes) a minimal set of experiments is always needed to compare the performance of LNTs. We define simple performance measures based on such a set of experiments that can be used to compare lean phase operations of various LNTs under various conditions concisely. Though the noble metal sites are essential for storage, the benefits of increasing noble metal loading start to wane beyond a certain limit. Our experiments suggest a possibility that a lean NOx reduction reaction may be occuring in LNTs. If this reaction is confirmed further in future experiments, its products need to be identified. The sorbent shifts the equilibrium between NO and NO2 towards NO.
Technical Paper

Intra-Channel Mass and Heat-Transfer Modeling in Diesel Oxidation Catalysts

2002-06-03
2002-01-1879
We consider the effect of intra-channel mass and heat transfer in modeling the performance of diesel oxidation catalysts. Many modeling studies have assumed that the intra-channel flow is laminar and, thus, heat and mass transfer between the bulk gas and wall are appropriately described using correlations for fully-developed laminar flow. However, recent experimental measurements of CO and hydrocarbon oxidation in diesel exhaust reveal that actual mass-transfer rates can deviate significantly from those predicted by such correlations. In particular, it is apparent that there is a significant dependence of the limiting mass-transfer rate on the channel Reynolds number. Other studies in the literature have revealed similar behavior for heat transfer. We speculate that this Reynolds number dependence results from boundary-layer disturbances associated with washcoat surface roughness and/or porosity.
Technical Paper

Controlling Cyclic Combustion Variations in Lean-Fueled Spark-Ignition Engines

2001-03-05
2001-01-0257
This paper describes the reduction of cyclic combustion variations in spark-ignited engines, especially under idle conditions in which the air-fuel mixture is lean of stoichiometry. Under such conditions, the combination of residual cylinder gas and parametric variations (such as variations in fuel preparation) gives rise to significant combustion instabilities that may lead to customer-perceived engine roughness and transient emissions spikes. Such combustion instabilities may preclude operation at air-fuel ratios that would otherwise be advantageous for fuel economy and emissions. This approach exploits the recognition that a component of the observed combustion instability results from a noise-driven, nonlinear deterministic mechanism that can be actively stabilized by small feedback control actions which result in little if any additional use of fuel.
Technical Paper

Time Irreversibility and Comparison of Cyclic-Variability Models

1999-03-01
1999-01-0221
We describe a method for detecting and quantifying time irreversibility in experimental engine data. We apply this method to experimental heat-release measurements from four spark-ignited engines under leaning fueling conditions. We demonstrate that the observed behavior is inconsistent with a linear Gaussian random process and is more appropriately described as a noisy nonlinear dynamical process.
Technical Paper

Prior-Cycle Effects in Lean Spark Ignition Combustion - Fuel/Air Charge Considerations

1998-02-23
981047
The goal of this investigation was to gain a better understanding of the effect of fuel/air charge composition on the dynamical structure of cyclic dispersion in lean-fueled spark ignition engines. Swirl and fuel injection timing were varied on a single-cylinder research engine to investigate the effects of charge motion and stratification on prior-cycle effects under lean operating conditions. Temporal patterns in the cycle-to-cycle combustion dynamics were analyzed using return maps, Shannon entropy, and symbol sequence statistics. Our results indicated a transition from stochastic behavior to noisy nonlinear determinism as equivalence ratio was decreased from near stoichiometric to very lean conditions. The equivalence ratio at which deterministic effects became important was strongly influenced by swirl and fuel injection timing. A comparison of our results and previous results from an eight-cylinder production engine showed similar trends.
Technical Paper

Symbolic Time-Series Analysis of Engine Combustion Measurements

1998-02-23
980624
We present techniques of symbolic time-series analysis which are useful for analyzing temporal patterns in dynamic measurements of engine combustion variables. We focus primarily on techniques that characterize predictability and the occurrence of repeating temporal patterns. These methods can be applied to standard, cycle-resolved engine combustion measurements, such as IMEP and heat release. The techniques are especially useful in cases with high levels of measurement and/or dynamic noise. We illustrate their application to experimental data from a production V8 engine and a laboratory single-cylinder engine.
Technical Paper

A Simple Model for Cyclic Variations in a Spark-Ignition Engine

1996-10-01
962086
We propose a simple, physically oriented model that explains important characteristics of cyclic combustion variations in spark-ignited engines. A key model feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Prior-cycle effects are produced by residual cylinder gas which alters volume-average in-cylinder equivalence ratio and subsequent combustion efficiency. The model's simplicity allows rapid simulation of thousands of engine cycles, permitting in-depth statistical studies of cyclic variation patterns. Additional mechanisms for stochastic and prior-cycle effects can be added to evaluate their impact on overall engine performance. We find good agreement with our experimental data.
Technical Paper

Interpretation of Engine Cycle-To-Cycle Variation By Chaotic Time Series Analysis

1990-10-01
902103
In this paper we summarize preliminary results from applying a new mathematical technique- chaotic time series analysis (CTSA)- to cylinder pressure data from a spark-ignition (SI) four-stroke engine fueled with both methanol and iso-octane. Our objective is to look for the presence of “deterministic chaos” dynamics in peak pressure variations and to investigate the potential usefulness of CTSA as a diagnostic tool. Our results suggest that sequential peak cylinder pressures exhibit some characteristic features of deterministic chaos and that CTSA can extract previously unrecognized information from such data.
X