Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Integrated CO2, Humidity and Thermal Control by Membrane Gas Absorption

2000-07-10
2000-01-2353
Membrane gas absorption for the control of CO2 in manned spacecrafts is studied by Stork and TNO. Membrane Gas Absorption (MGA) is based on the combination of membrane separation and gas absorption. The cabin air of a spacecraft is fed along one side of a hydrophobic membrane. The air diffuses through the membrane and the CO2 is selectively absorbed by an absorption liquid. Experiments showed that the MGA system can not only be used for the removal of the carbon dioxide but also can be applied to control the relative humidity and temperature of the cabin atmosphere. Absorption of moisture and heat is achieved by cooling the absorption liquid below the dewpoint temperature of the gas stream. This paper deals with the design aspects of a MGA system for combined CO2, humidity and thermal control aboard the Crew Transfer Vehicle. Furthermore, design data are presented for a similar system aboard the International Space Station.
Technical Paper

Integrated CO2 and Humidity Control by Membrane Gas Absorption

1997-07-14
972560
In a harmonized ESA/NIVR project the performance of membrane gas absorption for the simultaneous removal of carbon dioxide and moisture has been determined experimentally at carbon dioxide and humidity concentration levels representative for spacecraft conditions. Performance data at several experimental conditions have been collected. Removal of moisture can be controlled by the temperature of the absorption liquid. Removal of carbon dioxide is slightly affected by the temperature of the absorption liquid. Based on these measurements a conceptual design for a carbon dioxide and humidity control system for the Crew Transport Vehicle (CTV) is made. For the regeneration step in this design a number of assumptions have been made. The multifunctionality of membrane gas absorption makes it possible to combine a number of functions in one compact system.
X