Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

Preliminary Development of a Suit Port for Planetary Surface EVA — Design Studies

2009-07-12
2009-01-2586
This paper present a summary of the design studies for the suit port proof of concept. The Suit Port reduces the need for airlocks by docking the suits directly to a rover or habitat bulkhead. The benefits include reductions in cycle time and consumables traditionally used when transferring from a pressurized compartment to EVA and mitigation of planetary surface dust from entering into the cabin. The design focused on the development of an operational proof of concept evaluated against technical feasibility, level of confidence in design, robustness to environment and failure, and the manufacturability. A future paper will discuss the overall proof of concept and provide results from evaluation testing including gas leakage rates upon completion of the testing program.
Technical Paper

Innovative Concepts for Planetary EVA Access

2007-07-09
2007-01-3245
This study introduces several new concepts for suited EVA astronaut ingress/egress (departure and return) from a pressurized planetary surface habitat, based on use of a rear-entry suit and a suit lock or suitport. We provide insight into key operational aspects and integration issues, as well as the results of a requirements analysis and risk assessment of the concepts. The risk assessment included hazard analysis, hazard mitigation techniques, failure mode assessment, and operational risk assessment. Also included are performance and mass estimates for the egress concepts, and concepts for integration of the egress concepts with potential planetary habitat designs.
Technical Paper

Performance Characterization of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Based on Integrated Tests with Carbon Dioxide Removal and Reduction Assemblies

2006-07-17
2006-01-2126
CO2 removal, recovery and reduction are essential processes for a closed loop air revitalization system in a crewed spacecraft. Typically, a compressor is required to recover the low pressure CO2 that is being removed from the spacecraft in a swing bed adsorption system. This paper describes integrated tests of a Temperature-Swing Adsorption Compressor (TSAC) with high-fidelity systems for carbon dioxide removal and reduction assemblies (CDRA and Sabatier reactor). It also provides details of the TSAC operation at various CO2 loadings. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver it at a higher pressure. TSAC utilizes the principle of temperature-swing adsorption compression and has no rapidly moving parts.
Technical Paper

Capillary Movement of Liquid in Granular Beds

1993-07-01
932164
Knowledge of capillary migration of liquids in granular beds in microgravity is essential for the development of a substrate based nutrient delivery system for the growth of plants in space. This problem is also interesting from the theoretical as well as the practical point of view. The purpose of this study was to model capillary water propagation through a granular bed in microgravity. In our ground experiments, water propagation is driven primarily by capillary force. Data for spherical particle sizes in the range from 0.46 to 2 mm have been obtained. It was shown that the velocity of water propagation is very sensitive to particle size. Theoretical consideration is also provided. Actual space flight experiments are planned for the future to confirm our results.
Technical Paper

Measurement of Metabolic Responses to an Orbital-Extravehicular Work-Simulation Exercise

1988-07-01
881092
A new system has been designed to simulate orbital-extravehicular (EVA) work to provide for real-time measurement of physiological parameters. Such a system described here incorporates an experimental protocol, exercising subject, controlled-atmosphere chamber, EVA-work simulation exercise device, medical instrumentation and a data acquisition system. Applications of the neutral-buoyancy method and other laboratory-simulation methods are described. This information is presented to facilitate the understanding of this exercise device as a possible additional orbital-EVA work-simulation tool. Important engineering issues associated with the design of the proposed system are discussed.
Technical Paper

Development of a Thermal Control Coating for Space Suits

1987-07-01
871474
Past space suits and the current Shuttle suit, which are constructed primarily from fabric, use the Integrated Thermal and Micrometcoroid Garment, which insulates the astronaut from his environment. The new generation of hard suits affords designers the opportunity to incorporate thermal control into the suit structure. Environmental influence on the suit temperature and heat flux can then he minimized with a high reflectance coating. Candidate coatings have been identified and ranked on the basis of thermophysical properties; wear, corrosion and atomic oxygen degradation resistance; and coating process and cost. Laboratory determination of properties, thermal cycling and wear resistance tests are underway to identify the optimum coating. A computer model is being developed to evaluate various environmental configurations. Preliminary results are presented here.
Technical Paper

An Innovative Exercise Method to Simulate Orbital EVA Work: Applications to PLSS Automatic Controls

1987-07-01
871475
An exercise method has been proposed which may satisfy the current need for a laboratory simulation representative of muscular, cardiovascular, respiratory, and thermoregulatory responses to work during orbital extravehicular activity (EVA). The simulation incorporates arm crank ergometry with a unique body support mechanism that allows all body position stabilization forces to be reacted at the feet. By instituting this exercise method in laboratory experimentation, an advanced portable life support system (PLSS) thermoregulatory control system can be designed to more accurately reflect the specific work requirements of orbital EVA.
X