Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Role of Facet Angle Asymmetry in Fractures of the First Cervical Vertebra

1997-02-24
970496
Compression in the head-neck complex often causes fractures of the first cervical vertebra (C1). The type of fracture often determines whether the injury is stable or unstable, which significantly affects the ultimate injury severity. The often unstable bursting fracture of C1 is thought to be caused by a transformation of axial compressive forces into lateral bursting forces by the wedge-shaped lateral masses. The purpose of this study was to measure the orientation of the joint surfaces of C1 to determine whether this symmetry exists. An additional goal was to determine whether the orientation of the joint surfaces varied significantly with location on the surface. Direct measurements of surface coordinates were taken from 40 dried vertebrae. The angles of two areas on each of the four joint surfaces of the lateral masses of C1 were then calculated. The resulting angles agreed with previous investigations of upper cervical vertebral anatomy.
Technical Paper

The Influence of End Condition on Human Cervical Spine Injury Mechanisms

1991-10-01
912915
The passive combined flexion and axial loading responses of the unembalmed human cervical spine were measured in a dynamic test environment. The influence of end condition (the degree of constraint imposed on the head by the contact surface) was varied to determine its effect on observed column stiffness and on failure modes of the cervical spine. Multi-axis load cells were used to completely describe the forces and moments developed in the specimen. Twenty three specimens were studied. The Hybrid III neckform performance was assessed to determine its suitability as a mechanical simulator of the neck during head impact. Changes in end condition produced significant changes in axial stiffness in both the Hybrid III neckform and the cadaver neck. The mode of injury also varied as a function of end condition in a repeatable fashion. Separation of injuries based upon imposed end condition identified groups with significantly different axial load to failure.
Technical Paper

Responses of the Human Cervical Spine to Torsion

1989-10-01
892437
The passive torsional responses of the human cervical spine were investigated using unembalmed cervical spines in a dynamic test environment. Kinematic constraints were designed to simulate in vivo conditions. A physiologic axis of twist was determined based on a minimum energy hypothesis. Six-axis load cells completely described the resultant forces. Results include viscoelastic responses, moment-angle curves, and piece-wise linear stiffness. The Hybrid III ATD neckform was also tested, and its responses compared with the human. The Hybrid III neckform was stiffer than the human, was more rate sensitive than the human, and unlike the human, was relatively insensitive to the axis of twist. A rotational element to improve the biofidelity of the Hybrid III neckform in rotation was developed, and the results presented.
Technical Paper

Combined Bending and Axial Loading Responses of the Human Cervical Spine

1988-10-01
881709
The lateral, anterior and posterior passive bending responses of the human cervical spine were investigated using unembalmed cervical spinal elements obtained from cadavers. Bending stiffness was measured in six modes ranging from tension-extension through compression-flexion. Viscoelastic responses studied included relaxation, cyclic conditioning and constant velocity deformation. A five-axis load cell was used to measure the applied forces. Results include moment-angle curves, relaxation moduli and the effect of cyclic conditioning on bending stiffness. The Hybrid III ATD neckform was also tested and its responses are compared with the human. It was observed that the Hybrid III neckform was more rate sensitive than the human, that mechanical conditioning changed the stiffness of the human specimens significantly, and that changing the end condition from pinned-pinned to fixed-pinned increased the stiffness by a large factor.
X