Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of the 2002 Buick Rendezvous Body Structure

2001-04-30
2001-01-1414
This paper documents the development of the 2002 Buick Rendezvous body structure for optimum noise & vibration performance. Accelerated vehicle development timing demanded clearly defined body structure vibration performance targets, with critical dependence on math based modeling. The 2002 Buick Rendezvous was truly a fast-to-math program enabled partially by borrowing some of its structural features from the recently launched Pontiac Aztek Competitive performance data collected for the Aztek was tailored to the Rendezvous for setting major global body structure targets. Architectural differences in overall vehicle size and body opening configuration led to adjustments in body matchboxing, bending and torsional requirements. The frequency domain “mode map” was modified to these requirements taking into account the Buick Brand Character. Computer simulation models were used exclusively to predict body structural performance.
Technical Paper

The Evolution of the 1997 Chevrolet Corvette Powertrain Mounting System

1997-05-20
971938
Benchmarking of competitive vehicles and lessons learned from development of the 4th generation (C4) Chevrolet Corvette provided the starting point for the design of the 1997 5th generation (C5) Chevrolet Corvette powertrain mounting system. Synthesis methods were used to evaluate initial powertrain mounting systems, while development and analysis methods were utilized to refine the selected system in successive generations of prototype vehicles. The 1997 Chevrolet Corvette powertrain mounting design is seen to be a marked improvement over the previous generation.
Technical Paper

Development of the 2001 Pontiac Aztek Body Structure

2000-03-06
2000-01-1343
This paper documents the development process of the 2001 Pontiac Aztek body structure for improved noise & vibration performance. Successful vehicle development under an accelerated timing schedule demands clearly defined body structure vibration performance targets and critical dependence on the math based modeling process. Specifications for global body structure vibration performance were generated through a two step process. First, a benchmarking activity was undertaken to comprehend competitive vehicle performance. Secondly, a frequency domain “mode map” was constructed to minimize vehicle subsystem interaction. Computer simulation models were developed to predict the body structure performance. A coarse full body structure model was used to define body structure section size and joint requirements. Detailed analysis models of body joint areas were used to synthesize the joint design.
X