Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

Low Speed Pre-Ignition (LSPI) Durability – A Study of LSPI in Fresh and Aged Engine Oils

2018-04-03
2018-01-0934
Downsized gasoline engines, coupled with gasoline direct injection (GDI) and turbocharging, have provided an effective means to meet both emissions standards and customers’ drivability expectations. As a result, these engines have become more and more common in the passenger vehicle marketplace over the past 10 years. To maximize fuel economy, these engines are commonly calibrated to operate at low speeds and high engine loads – well into the traditional ‘knock-limited’ region. Advanced engine controls and GDI have effectively suppressed knock and allowed the engines to operate in this high efficiency region more often than was historically possible. Unfortunately, many of these downsized, boosted engines have experienced a different type of uncontrolled combustion. This combustion occurs when the engine is operating under high load and low speed conditions and has been named Low Speed Pre-Ignition (LSPI). LSPI has shown to be very damaging to engine hardware.
Journal Article

Improving Fuel Efficiency of Motorcycle Oils

2013-10-15
2013-32-9063
As the motorcycle market grows, the fuel efficiency of motorcycle oils is becoming an important issue due to concerns over the conservation of natural resources and the protection of the environment. Fuel efficient engine oils have been developed for passenger cars by moving to lower viscosity grades and formulating the additive package to reduce friction. Motorcycle oils, however, which operate in much higher temperature regimes, must also lubricate the transmission and the clutch, and provide gear protection. This makes their requirements fundamentally very different from passenger car oils. Developing fuel efficient motorcycle oils, therefore, can be a difficult challenge. Formulating to reduce friction may cause clutch slippage and reducing the viscosity grade in motorcycles must be done carefully due to the need for gear protection.
Journal Article

Fuel Economy Durability - A Concept to be Considered for Motorcycle Oils

2011-11-08
2011-32-0545
Motorcycle manufacturers have recognized that highly friction modified passenger car oils can be deleterious to clutch performance, leading to clutch slippage. To address this issue, a JASO specification for four-stroke motorcycle oils was developed in 1999, categorizing oils into high friction oils termed JASO MA and low friction oils termed JASO MB. The high friction oils were preferred for most motorcycles where the engine oil also lubricates the clutch and gears. New motorcycle transmission technologies have increased the number of dry clutch applications which has led to an increased demand for JASO MB oils to improve fuel efficiency. While JASO MB oils contain friction modifiers to improve initial fuel economy, the motorcycle specifications have not addressed the fuel economy durability of motorcycle oils.
Technical Paper

Development of Novel Friction Modifier Technology Part 2: Vehicle Testing

2011-08-30
2011-01-2126
Requirements to reduce emissions and improve vehicle fuel economy continue to increase, spurred on by agreements such as the Kyoto Protocol. Lubricants can play a role in improving fuel economy, as evidenced by the rise in the number of engine oil specifications worldwide that require fuel economy improvements. A novel friction modifier technology has been developed to further improve vehicle fuel economy. The development of this novel friction modifier technology which contains only N,O,C,H was previously published along with the initial demonstration of performance in motorized Toyota engines. In order to validate this performance in fired engine tests, oil was evaluated in a Toyota Corolla Fielder with a 1500 cc gasoline engine. Testing was conducted in the Japanese 10-15 and JC08 modes, as well as the European EC mode, and the US FTP mode.
Technical Paper

Development of Catalyst-Friendly FC-W® Certified Marine Oils Utilizing Novel ZDP Technology

2009-11-03
2009-32-0075
Phosphorus is known to reduce the effectiveness of the three-way catalysts commonly used by automobile manufacturers by deactivating the catalyst. This process occurs as zinc dialkyldithiophosphate (ZDP) decomposes in the engine oil, creating many phosphorus species, which provide excellent wear protection of the engine but can also interact with the active sites of the three-way catalyst. This reactivity has led to API specifications for engine oils with lower concentrations of phosphorus. In order to further minimize catalyst deactivation without compromising wear protection, a novel ZDP technology was designed for engine oil applications. This novel ZDP was designed to minimize the amount of phosphorus produced via volatilization during engine operation while maintaining engine wear protection.
Technical Paper

Development of new engine oil technology designed to bring more benefits to the boat owner than passenger car motor oils can provide

2007-10-30
2007-32-0079
Several engine manufacturers are offering 4-stroke marine engines in order to meet 1998 US EPA emissions regulations requiring a 75% hydrocarbon reduction by 2006. These 4-stroke marine engines have been lubricated with passenger car motor oil in the past; however, the environment in which these engines operate is quite different from a passenger car engine. Perhaps the biggest differences are that marine engines do not use a closed loop cooling system, and they often operate in a corrosive salt water environment. They may be operated for extended periods of time at low speed while trolling, allowing build-up of water and fuel in the engine oil. For these reasons, oil used in this application should have corrosion inhibiting properties that are much better than what is found in passenger car oil. In addition, boats are often used seasonally and stored for long periods of time during the winter.
Technical Paper

Why Some Passenger Car Motor Oils Are No Longer Suitable for Motorcycles: Gear Pitting Issues

2005-10-12
2005-32-0088
The new American Petroleum Institute (API) categories for passenger car motor oils have focused on improving fuel economy and reducing emissions. This has resulted in more fuel efficient oils being developed by lowering the viscometrics and by adding friction modifiers. The emissions reductions have resulted from lowering the percent phosphorus (%P) in the engine oils because phosphorus has been found to poison the catalyst in the catalytic converter. When friction modifiers were introduced, researchers from four Japanese motorcycle manufacturers published the results of their studies (SAE 961217) which indicated that low friction oil can cause too much slippage in starter motor clutches, one-way limited slip clutches, and wet multi-plate clutches. In that same study they reported that engine manufacturers use 10W-30 grade oil to develop new engine technology, and gear pitting was observed with oils of viscosity grades lower than 10W-30 in all four manufacturers' motorcycle engines.
X