Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

ULSAB-Advanced Vehicle Concepts: Safety/Crash Management

2002-03-04
2002-01-0638
The goal of ULSAB-Advanced Vehicle Concepts (AVC) is to develop a platform with the highest number of shared parts possible between two vehicle classes -European C-Class and the North American PNGV-Class concepts. Aggressive targets for mass and safety are considered --all the while maintaining affordable cost and achieving safety goals anticipated for 2004 and beyond. The objective of the CAE analysis of crashworthiness for ULSAB-AVC is to analyze and optimize the vehicle structure to provide the opportunity for development of complete vehicles that will obtain excellent star ratings. This paper will discuss crash safety and crash energy management aspects of the ULSAB-AVC, including important considerations for selecting advanced high-strength steels for crashworthiness applications, body-in-white design and materials selection procedures, BIW concept design and major load paths, and performance against crashworthiness targets.
Technical Paper

New High Strength Steels Help Automakers Reach Future Goals for Safety, Affordability, Fuel Efficiency and Environmental Responsibility

2001-10-16
2001-01-3041
Vehicle weight reduction, reduced costs and improved safety performance are the main driving forces behind material selection for automotive applications. High strength steels (HSS) have demonstrated their ability to meet these demands and consequently have been the fastest growing light-weighting material in vehicle structures for the past decade. The evolution in steel technology in recent years has produced new grades of highly formable, advanced high strength steel (AHSS) grades that will continue to meet these automotive demands into the next decade. This paper describes how the remarkable combination of formability, strength, ductility, durability, strain-rate sensitivity and strain hardening characteristics of the AHSS grades enable affordable weight reduction while improving crash safety.
Technical Paper

New High Strength Steels Applied to the Body Structure of ULSAB-AVC

2001-10-16
2001-01-3042
In the ULSAB Project released in 1998, high strength steels (HSS) were applied to 90 percent of the body and structural components, and a mass saving of 25 percent compared to an average of benchmark vehicles was achieved. In the ULSAB-Advanced Vehicle Concepts (AVC) Project, high strength steels are used for most of the components, but many of these materials are identified as ultra high strength steel (UHSS) grades of advanced high strength steels. These grades include dual phase (DP) from 280 MPa yield (YS) to 1000 MPa tensile (UTS), complex phase (CP) 700/800 MPa (YS/UTS), and martensitic (Mart) 1200 MPa and 1520 MPa (UTS) grades. This paper reviews how these materials are applied to specific parts of the ULSAB-AVC Class-C and Class-PNGV vehicle concepts and the reasons for their selection. It also compares the materials used in the body structures of ULSAB and ULSAB-AVC
Technical Paper

Development of High Strength Batch Annealed Low Carbon Steel for Automotive Application

1996-02-01
960027
In order to increase the strength and formability of batch annealed sheet steels, design of experiment method was used to set up an experimental matrix with five factors, including C, Mn, P in steels, coiling, and batch annealing temperatures, at two levels. Effects of these factors were analyzed using analysis of variance and linear regression methods for cold spot and hot spot, respectively. Linear regression results showed that higher alloying element contents and coiling temperature will increase strength and deteriorate elongation, which is opposite to the effect of annealing temperature. Analysis of variance showed similar results to those of linear regression, except the effect of C on elongation and effect of coiling temperature on tensile strength and elongation are negligible for cold spot. For hot spot, effect of coiling temperature on tensile strength is small.
X