Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

New Generation Fuel Efficient Engine Oils with Superior Viscometrics

2017-10-08
2017-01-2349
Automobile OEMs are looking for improving fuel economy[1,2] of their vehicles by reducing weight, rolling resistance and improving engine and transmission efficiency apart from the aerodynamic design. Fuel economy may be improved by using appropriate low viscosity [3] and use of friction reducers (FRs)[4,5] in the engine oils. The concept of high viscosity index [6] is being used for achieving right viscosity at required operating temperatures. In this paper performance properties of High Viscosity Index engine oils have been compared with conventional VI engine oils. Efforts have been made to check the key differentiation in oil properties w.r.t. low temperature fluidity, high temperature high shear viscosity/deposits, friction behavior, oxidation performance in bench tribological /engine/chassis dyno tests which finally lead to oil performance assessment. Three candidates of SAE 0W-30 grade oil with ACEA C2/API SN credentials have been chosen using various viscosity modifiers.
Technical Paper

Evaluating the Soot Handling Performance of Diesel Engine Oils through Optimized Engine Testing Protocol

2017-03-28
2017-01-0885
Majority of light and heavy duty commercial vehicles on road in India use API-CF grade lubricants. Soot accumulation in lubricating oil can result in engine wear and lubricant’s viscosity increase thereby affecting its pumping ability and drain interval. Due to faster lubricant degradation and with emergence of newer engine technologies, there is increasing demand of improving performance of lubricants particularly with respect to soot dispersancy. This paper describes the various engine hardware modifications and optimizations carried out on a commercial BS II, 4-cylinder turbocharged diesel engine in order to develop a flexible engine test procedure for evaluating the lubricant’s dispersancy/anti wear characteristics up to 6% soot levels.
Technical Paper

Characterization of Ultrafine Particle Emissions from a Heavy Duty CNG Engine through Endurance Tests

2017-03-28
2017-01-0778
In the light of major research work carried out on the detrimental health impacts of ultrafine particles (<50 nm), Euro VI emission standards incorporate a limit on particle number, of which ultrafine particles is the dominant contributor. As Compressed Natural Gas (CNG) is a cheaper and cleaner fuel when compared to diesel, there has been a steady increase in the number of CNG vehicles on road especially in the heavy duty segment. Off late, there has been much focus on the nature of particle emissions emanating from CNG engines as these particles mainly fall under the ultrafine particle size range. The combustion of lubricant is considered to be the dominant source of particle emissions from CNG engines. Particle emission due to lubricant is affected by the oil transport mechanisms into the combustion chamber which in turn vary with engine operating conditions as well as with the physico chemical properties of the lubricant.
Technical Paper

Effect of Crankcase Oil on the Particle Size Distribution and Total Number Concentration in a Heavy Duty CNG Engine

2015-09-01
2015-01-2041
In this paper, the characteristics of particle size distribution in the exhaust of a turbocharged 5.9 liter Cummins gas engine lubricated by two commonly used oils of different viscometrics (15W-40 and 20W-50) have been investigated. The study also attempts to differentiate the performance of the lubricants on the basis of fuel economy. A test procedure developed in- house was used for the evaluation, wherein the engine was operated at various speeds (1200-2800rpm) and load (25 %, 50% & 75%) conditions. Particle size distribution is measured using Engine Exhaust Particle Sizing Spectrometer (TSI EEPS Model 3090). Results indicate that a majority of the particle emissions are observed in the nucleation region (particle diameter < 50nm) and particle size distribution is found to significantly vary with engine speed.
X