Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Method to Predict the Energy Absorption Rate Characteristics for a Structural Member

1998-09-29
982388
The rate of energy absorption during the plastic deformation of structural components is an important factor in the design of automotive safety systems such as chassis crumple zones. This paper describes a design tool for predicting energy absorption characteristics. The tool was based on measurements of the energy absorption rates of twenty-three selected materials subjected to three impact energy conditions. A well-established finite element code, LS-DYNA3D, was used with a mesh representing a hollow column of square cross-section to establish a database of energy absorption characteristics. A mathematical model representing the energy absorption rates was determined and the material properties most influencing the energy absorption rates were identified. A parabolic model best represented the energy absorption charactersitics. The regression coefficients for the model were determined for all tested materials under the selected test conditions.
Technical Paper

The Effect of Structural Stiffness on Occupant Response for a -Gx Acceleration Impact

1996-10-01
962374
This study relates the structural stiffness and kinetic energy of impact to the dynamic response of a belted vehicle occupant. Acceleration time histories of impact for structures with different stiffnesses were obtained by performing a finite element analysis using the LS-DYNA3D finite element program and a model representing a structural member made of AISI 4340 steel. For the human body dynamics analysis, the Articulated Total Body (ATB) computer program was used to perform six simulations of a 50 percentile male restrained by a 3-point seatbelt system for a co-linear -Gx impact.
Technical Paper

Energy Absorption for Short Duration Impacts

1996-08-01
961851
The objective of this study is to relate energy absorption characteristics to selected material properties and to establish a methodology that allows one to determine some of the material properties for maximum energy absorption. The finite element program DYNA-3D and its associated pre and post processors were used. The model used is a hollow square column. Five properties of the materials were included in the analysis: (i) Density (ii) Elastic Modulus (iii) Tangent Modulus (iv) Yield Strength, and (v) Poisson Ratio. The Response Surface Method in conjunction with the canonical analysis were employed to locate the optimum or near optimum levels of the properties and then to determine the equation of the response surface in an area near the vector of optimum levels. For the given levels of three out of five material properties used in the study, one can calculate the remaining two material property levels to achieve the near-optimal energy absorption.
X