Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Sound Quality Evaluation of Chimes

2010-10-17
2010-36-0549
The customer perception of vehicle quality and safety is associated to the interior and exterior vehicle touching, feeling and hearing. One of the items related to hearing are the chimes, which are the sounds generated for safety and warning purposes. These sounds are typically transient - harmonic or constant signals, giving to the driver and passenger information that something is not accomplished adequately. As those sounds have different purposes, each one of them has different pitch, level of intensity, duration and shape. This paper presents an objective evaluation of this kind of signal based on psychoacoustic parameters as loudness and sharpness. Besides those parameters, total harmonic distortion and wavelets are considered.
Technical Paper

Gear Lever Sound Quality Evaluation

2010-10-06
2010-36-0369
Vehicle sound quality has become lately one of the main topics of study in the automotive industry which is associated with the quality of the product. Into the automotive development the static operational sound quality is one of the attributes that is considered. The sounds produced through the manipulation of items like the doors and interior components (windows, seats, safety belts, windshield wipers, and others) generated for safety and warning purposes are items related to the vehicle quality for customers. Those sounds based on relative level of intensity, duration, harmony and degree of contribution are elements that the customer will retain in mind, an overall quality impression. The sound produced during gear lever manipulation is important to the customer in order that the event should transmit low intensity and robust and soft impression.
Technical Paper

Constant Q Transform for Automotive NVH Signal Analysis

2010-10-06
2010-36-0373
The constant Q transform consists of a geometrically spaced filter bank, which is close to the wavelet transform due to the feature of its increasing time resolution for high frequencies. On the other hand, it can be processed using the well-known FFT algorithm. In this sense, this tool is a middle term between Fourier and wavelet analyses, which can be used for stationary and non-stationary signals. Automotive NVH signals can be stationary (e.g., idle, cruise) or non-stationary, i.e., time-varying signals (e.g., door closing/opening, run-up, rundown). The objective of this work is to propose the use of the constant Q transform, developed originally for musical signal processing, for automotive NVH (run up, impact strip and door closing) time-frequency analyses. Also, similarities and differences of the proposed tool when compared with Fourier and wavelet analyses are addressed.
Technical Paper

Time - Frequency Analysis Techniques Applied to Automotive Noise and Vibration Signals

2008-10-07
2008-36-0350
Automotive stationary noise and vibration signals are normally analyzed using Fourier methods. However, many noise and vibration signals are non-stationary (transient or time-varying). In those situations, the time characteristics of the signals can be lost using standard Fourier methods. Lately, time-frequency (TF) analysis methods have become more popular and are applied in many different areas of NVH (Noise, Vibration, and Harshness) in order to preserve the time-frequency information. The objective of this paper is to present some of the different time-frequency analysis tools, such as the Short Time Fourier transform (spectrogram), the Gabor Transform, the Wavelet transforms (scalograms), and the Wigner-Ville Distribution. Examples of application of these techniques to automotive non-stationary noise and vibration signals are presented.
Technical Paper

Correlation between vehicle interior noise and alternator radiated noise measured on bench test

2008-03-30
2008-36-0537
In automotive industry, the interior quietness is a task that manufacturers are constantly improving for passenger comfort. In order to improve the interior quietness there are considered the contribution of structure borne and airborne noise. An alternator used in vehicles for generation of electricity can be considered as a contributor of airborne noise. Due to the characteristics of an alternator, it could radiate mechanical, aerodynamic and electromagnetic noise. The last two characteristics are normally perceived by customer during powertrain and idle evaluation. In this paper is presented correlation between interior noise measured on road test and alternator radiated noise measured on bench test.
Technical Paper

Experimental analysis between air intake transmission loss and powertrain NVH interior noise

2006-11-21
2006-01-2729
Nowadays the vehicle development must be done in a reduced time and cost without compromising the quality in accordance with global standpoint strategy. In order to accomplish that, several actions would be implemented and one of them is related to components tuning, focusing a rig bench test. Through a robust rig test, acceptable results can be achieved which would provide an interesting guide to release good tuning parts for the vehicle. Among them, the proper tuning of air intake system plays an important role for powertrain NVH attribute in vehicle. Transmission loss is a property of the acoustic system, which represents the difference in the sound power level between the incident and transmitted waves and might be use as a metric to describe a general acoustic performance of it and address the component development. This paper presents an experimental analysis between air intake transmission loss yielded by a rig test and powertrain NVH interior noise.
Technical Paper

Objective chime sound quality evaluation

2006-11-21
2006-01-2667
Customer perception of vehicle quality and safety is based on many factors. One important factor is the customers impression of the sounds produced by body and interior components such as doors, windows, seats, safety belts, windshield wipers, and other similar items like sounds generated automatically for safety and warning purposes. These sounds are typically harmonic or constant, and the relative level of perception, duration, multiplicity, and degree of concurrence of these sounds are elements that the customer will retain in an overall quality impression. Chime sounds are important to the customer in order to alert that something is not accomplished in a right way or for safe purposes. The chimes can be characterized by: sound level perception, frequency of the signal, shape of the signal, duration of the “beep” and the silence duration.
Technical Paper

Development of a rig test to measure transmission loss of air intake systems

2005-11-22
2005-01-4122
The main functions of the air intake system are: supply air to the engine, filter particles, tuning the dynamic performance and filter acoustic noise. The last function can be characterized using parameters which will describe the performance of a general acoustic system. This includes: Noise Reduction, Insertion Loss and Transmission Loss. Among them, the transmission loss is a property of the acoustic system that represents the difference in the sound power level between the incident and transmitted waves. To measure the transmission loss in a simple and practical way, a rig test is proposed using an improved anechoic termination whose results presents a good agreement compared with analytical data. To validate the methodology, a simple expansion chamber with common dimensions is used as an acoustic element.
Technical Paper

Automotive Audio System Development

2005-11-22
2005-01-4053
Vehicle audio system performance is an important attribute for final costumers. In this sense, its evaluation is an important aspect for selecting the design and validation process for automobile manufacturers. Usually the vehicle audio system performance is evaluated only by subjective judgment. However the design requirements demands objective measurements to set targets establish benchmarking and apply refinements to the design. Thus, in order to evaluate and improve sound system performance, it has been established a subjective evaluation process on reproducing and analyzing customer perception in a more reliable way. To support this information, objective evaluations have been used based on total harmonic distortion (THD), normalized frequency response (NFR) methods and spectrogram, which have been shown as straight and fast objective tools. Reinforcing the objective evaluations, qualitative time-frequency spectrogram has been used.
Technical Paper

Seat belt retractor objective evaluation

2005-11-22
2005-01-4164
Squeak and rattle is an important sub Noise and Vibration attribute which can be easily noticed by the costumer. A rattle was observed at seat belt retractor during subjective evaluation at a special test on a rough road It was developed an objective metric, in laboratory, with the aim to establish an acceptance criteria for the part. The objective of this paper is to show how noise, vibration and harshness engineers worked on the correlation between subjective and objective evaluation concerning this rattle.
X