Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Analysis and Control of Energy Storage in Aircraft Power Systems with Pulsed Power Loads

2016-09-20
2016-01-1981
One of the main challenges in the power systems of future aircraft is the capability to support pulsed power loads. The high rise and fall times of these loads along with their high power and negative impedance effects will have an undesirable impact on the stability and dc bus voltage quality of the power system. For this reason, studying ways to mitigate these adverse effects are needed for the possible adoption of these type of loads. One of the technologies which can provide benefits to the stability and bus power quality is Energy Storage (ES). This ES is designed with the capability to supply high power at a fast rate. In this paper, the management of the ES to mitigate the effects of pulsed power loads in an aircraft power system is presented. First, the detailed nonlinear model of the power network with pulsed power loads is derived. Due to the large size of this model, a model order reduction is performed using a balanced truncation and a second order approximation.
Technical Paper

Sputtered Barium Titanate, Lead Zirconate Titanate, Barium Strontium Titanate Films for Capacitor Applications

2000-10-31
2000-01-3653
Thin barium titanate(BT), lead zirconate titanate(PZT), barium strontium titanate(BST) films are being developed for use in microelectronics, electromechanical and optoelectronic applications. Thin BaTiO3, Pb(ZrTi)O3 and (BaSr)TiO3 film capacitor devices were fabricated using RF sputtering techniques. The typical dielectric constant of these film capacitors was in the range of 300 to 1140. These film capacitors had dissipation factors between 0.2% to 0.6 % before annealing and 4-6% after annealing. The film capacitors have breakdown voltages in the range of 1×105 V/cm to 1.2×106 V/cm. The resistivity was in the range of 1010 to 1012 ohm-cm before annealing and 1013 to 1014 ohm-cm after annealing. The capacitance of films produced to-date had little dependence on frequency. Thermal cycling in the temperature range of 50 to 300°C had very limited impact on the capacitance and dissipation factor. Measurements of dielectric and material properties are reported.
Technical Paper

Rolled Barium Titanate (Bt) Film Capacitor for Pulsed Power Application

1999-08-02
1999-01-2596
Thin barium titanate (BT) film is being developed for use in microelectronics, electromechanical and optoelectronic applications. For this study rolled thin BaTiO3 film capacitors were fabricated using RF sputtering techniques. Capacitor grade aluminum foil was used as the bottom electrode. The top electrode was sputtered aluminum film, which was used for quick measurement purposes. The as-deposited ceramic film on aluminum foil was very flexible at room temperature and could be easily rolled. The foil was masked to preserve side electrodes. The typical dissipation factors (DF) of these BT film capacitors were in the range of 0.002 to 0.005. A low dissipation factor is extremely important for pulsed power or high power filtering applications. These BT film capacitors had a parallel resistance of 15 to 20 mega-ohm. With the thickness of the film being 8,000 Å, the average dielectric constant was calculated to be 25. The insulation resistance was about 138 giga-ohm.
Technical Paper

Recrystallization Characteristics of Mo-W-Re-HfC Alloys for Thermionic Applications

1992-08-03
929302
Microstructural evolution of a Mo-10W-2Re-0.5HfC alloy was studied in the temperature range of 298 K to 2200 K. The typical characteristics of the microstructure were curly deformation bands, with nucleation at boundaries and subgrain coalescence. The recrystallization temperature of the Mo-10W-2Re-0.5HfC alloy was determined to be near 1950 K, which is comparable with 2125 K for W-4Re-0.35 HfC and 2000 K for W-0.35 HfC. Microhardness tests were performed before and after 1 hour of vacuum annealing and the results indicate that the mechanical strength of Mo-10W-2Re-0.5HfC is lower than that of W-4Re-0.35 HfC or W-0.35 HfC. X-ray diffraction and pole figures indicate that this particular alloy exhibits the primary texture (110) and secondary texture (112) which is normally observed in B.C.C. metals such as Molybdenum. The creep strengths of W-4Re-0.35HfC, TZM-Mo, and W-25Re-30Mo were evaluated and compared at the same stress level.
Technical Paper

Orientational Effects on the Performance of a Heat Pipe Coupled Thermionic Converter

1992-08-03
929359
The effects of collector heat pipe orientation upon the electrical and thermal performance of a planar thermionic converter were investigated. The high heat throughput of the converter must be carried away from the collector following electrical power production. The planar thermionic converter tested employs chemical-vapor-deposited rhenium on molybdenum electrodes, a separately heated two-phase cesium reservoir, and a radiantly coupled, electric emitter heater. The collector also functions as the evaporator end cap for the liquid sodium heat pipe. The converter fixture places the heat pipe in the reflux mode (evaporator below the condenser) and allows orientational changes of 15, 30, 45, and 60 degrees from the vertical. It was determined that the thermionic output performance is a relatively weak function of orientation angle in the range of 0 to 60°. As the emitter temperature increased, the effect of orientation on the converter performance increases.
X