Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Application of Two-Color Particle Image Velocimetry to a Firing Production Direct-Injection Stratified-Charge Engine

1999-03-01
1999-01-1111
A two-color Particle Image Velocimetry (PIV) technique has been applied for the first time to a firing, production, three-cylinder, two-stroke, direct-injection stratified-charge engine operated under realistic conditions. In comparison to single color PIV, two-color PIV can resolve the directional ambiguity of the velocity by cross-correlating two digitized photographic images of a particle-seeded flow field, acquired sequentially at two different light wavelengths. Such an approach is essential in complex, a priori unknown, flow fields, such as those of most I.C. engines. To gain optical access to the combustion chamber, the engine head was equipped with two optical windows in such a way that its original geometry was practically undisturbed. Although the field of view was relatively small, it covered a critical area of the combustion chamber. The measurements were made in the plane perpendicular to the engine longitudinal axis, within the crank angle range of 70 to 10 degrees BTDC.
Technical Paper

A Study of H2, CH4, C2H6 Mixing and Combustion in a Direct-Injection Stratified-Charge Engine

1997-05-01
971710
The combustion characteristics of three gaseous fuels (hydrogen, methane and ethane) in a direct-injection stratified-charge single-cylinder engine with a centered square head-cup operated at 800 rpm (compression ratio = 10.8, squish ratio = 75%, nominal swirl ratio = 4) were studied to assess the extent to which the combustion is controlled by turbulent mixing, laminar mixing and chemical kinetics. The injection of gaseous fuels was via a Ford AFI injector, originally designed for the air-forced injection of liquid fuel. Pressure measurements in the engine cylinder and in the injector body, coupled with optical measurements of the injector poppet lift and shadowgraph images of the fuel jets provided both quantitative and qualitative information about the in-cylinder processes. To make the cases comparable, the total momentum of the fuel jets and the total heat released by the three fuels was kept the same (equivalence ratio = 0.316, 0.363, 0.329 for H2, CH4 and C2H6, respectively).
Technical Paper

The Effects of Fuel Atomization, Vaporization, and Mixing on the Cold-Start UHC Emissions of a Contemporary S.I. Engine with Intake-Manifold Injection

1995-10-01
952482
Engine-out, cold-start (from 20°C) UHC emissions from a contemporary 2.0 4-cylinder engine with swirl control were measured with FID and FT-IR. The steady-state, end of test operation was 1500 rpm, 2.6 bar BMEP (25% load) and stoichiometric mixture. Four fuel systems were employed pintle-type port-injected gasoline, air-forced port-injected gasoline, port-injected propane, and premixed propane. These fuel systems were chosen to separate effects of fuel atomization, vaporization, and fuel-air mixing. Each system was optimized with respect to injector targeting, injection timing, mixture enrichment, and spark advance. Open-valve injection timing increased UHC emissions more with the pintle-type injector than with the air-forced, system. UHC emissions with propane injection were minimized with open valve injection.
Technical Paper

Investigation of the Fuel Distribution in a Two-Stroke Engine with an Air-Assisted Injector

1994-03-01
940394
Results of experiments performed on a direct-injection two-stroke engine using an air-assisted injector are presented. Pressure measurements in both the engine cylinder and injector body coupled with backlit photographs of the spray provide a qualitative understanding of the spray dynamics from the oscillating poppet system. The temporal evolution of the spatial distribution of both liquid and vapor fuel were measured within the cylinder using the Exciplex technique with a new dopant which is suitable for tracing gasoline. However, a temperature dependence of the vapor phase fluorescence was found that limits the direct quantitative interpretation of the images. Investigation of a number of realizations of the vapor field at a time typical of ignition for a stratified-charge engine shows a high degree of cycle to cycle variability with some cycles exhibiting a high level of charge stratification.
Technical Paper

Two-Color Particle Image Velocimetry in an Engine With Combustion

1993-03-01
930872
A two-color Particle Image Velocimetry (PIV) technique has been applied to a single cylinder, cup-in-head two-stroke research engine. In the two-color PIV, two wavelengths are used to successively record, at a known time separation, the positions of the particulate seeds in the flowfield. By separately interrogating the two images of different color and cross-correlating them, a two-dimensional velocity field is obtained. Since the sequence of the images is known, directional ambiguity is eliminated and two-color PIV can be used to study complex flows. The technique is here applied for the first time to an engine in the presence of combustion. The presence of combustion light complicates the application of two-color PIV because narrow band-pass laser line filters can not be used to reject it, however a suitable combination of laser power, colored glass filters and thresholding during interrogation allowed sufficiently high quality images to be obtained.
Technical Paper

Two-Color Particle Image Velocimetry Applied to a Single Cylinder Two-Stroke Engine

1992-10-01
922309
A two-color Particle Image Velocimetry (PIV) technique has been applied to a motored single cylinder two-stroke motored research engine. In two-color PIV, two light sheets of different wavelengths are used to successively record, at a known time separation, the positions of the particulate seeds in the flowfield. By separately interrogating the two images of different color and cross-correlating them, a two-dimensional velocity field is obtained. Since the sequence of the images is known, directional ambiguity is eliminated and two-color PIV can be used to study complex, recirculating flows such as those found in an internal combustion engine. The technique is used here to measure the flow in the cup of a motored, single cylinder, cup-in-head, research engine operating with high swirl. Velocity fields were measured at several planes parallel to the piston crown. Multiple images were obtained at each plane, and ensemble averaged velocity and velocity fluctuation were determined.
X