Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Crankshaft Impact Noise and Three-Dimensional Vibration

2014-10-13
2014-01-2863
This paper describes the characteristics and mechanism of crankshaft impact noise that radiates from the cylinder body at full load medium engine speeds, based on the mechanism for axial vibration of crankshaft coupled with torsional vibration of crankshaft.
Journal Article

Analysis of Ticking Noise from Cam Bearing of a Diesel Engine

2012-09-10
2012-01-1625
Improving idle sound quality as well as reducing idle noise level is increasingly demanded for diesel engines. Therefore, unusual noise occurrence at idle is a serious problem, and the noise must be removed. This paper describes the characteristics and mechanism of ticking noise that is unusual noise radiated from the journal bearing of the camshaft at low idle speeds, based on the mechanism of cavitation in oil film existing between the journal and bearing.
Technical Paper

Optical Sensor Concepts for Future Head-Lighting System

2007-04-16
2007-01-0611
To enhance drivers' convenience and safety, headlamps and headlamp control systems have been remarkably improved. For example, in daytime driving condition, auto-lighting systems support drivers especially when they repeat entering and exiting tunnels in mountain areas. On the other hand, in nighttime driving conditions, the higher luminance headlamp HID gives drivers the enhanced visibility and Adaptive Front-lighting System (AFS) offers them the increased forward visibility on curves. Nevertheless, their performances are not yet enough developed to meet the market demands. In case of entering tunnels, the lighting-up timing is sometimes later than desired. In case of HID and AFS, their potentials are sometimes unnecessarily restrained to prevent glare to oncoming vehicles even they don't exist. These problems should be solved by adding the scene sensor to those systems.
Technical Paper

A Numerical Approach for Piston Secondary Motion Analysis and its Application to the Piston Related Noise

1997-05-20
972043
Piston slap impact noise has been investigated using a piston secondary motion simulation. This simple model accurately estimates piston slap impact, by considering the hydrodynamic effects of the piston skirt oil film and the friction forces at various contact points. The results were compared with the actual piston motion measured by a link mechanism. Consequently, the calculation accuracy was confirmed to be sufficient to make precise estimates of piston slap noise.
X