Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Comparing Breakup Models in a Novel High Injection Pressure SCR System using Polyhedral Meshing

2014-10-13
2014-01-2816
A novel high pressure SCR spray system is investigated both experimentally and numerically. RANS simulations are performed using Star-CD and polyhedral meshing. This is one of the first studies to compare droplet breakup models and AdBlue injection with high injection pressure (Pinj=200 bar). The breakup models compared are the Reitz-Diwakar (RD), the Kelvin-Helmholtz and Rayleigh-Taylor (KHRT), and the Enhanced Taylor Analogy Breakup (ETAB) model. The models are compared with standard model parameters typically used in diesel fuel injection studies to assess their performance without any significant parameter tuning. Experimental evidence from similar systems seems to be scarce on high pressure AdBlue (or water) sprays using plain hole nozzles. Due to this, it is difficult to estimate a realistic droplet size distribution accurately. Thereby, there is potential for new experimental data to be made with high pressure AdBlue or water sprays.
Journal Article

Reduction of Heavy-Duty Diesel Exhaust Particle Number and Mass at Low Exhaust Temperature Driving by the DOC and the SCR

2012-09-10
2012-01-1664
The effect of SCR on nanoparticle emissions has been a subject for some recent diesel particle emission related studies. In this study, the effect of after-treatment (DOC and SCR) on particle emissions was studied with a heavy-duty off-road diesel engine (emission level stage 3b with an SCR). A special “transient cold test cycle” (TCTC) was designed to describe the SCR system operation at low exhaust gas temperatures. The particle instrumentation made it possible to measure on-line the particle number concentration, particle size distribution and chemical composition of particles. The largest particle number concentrations were measured after the exhaust manifold. The exhaust after-treatment was observed to reduce the total particle number concentration by 82.5% with the DOC and 95.7% with the DOC+SCR.
Technical Paper

Emission performance of paraffinic HVO diesel fuel in heavy duty vehicles

2011-08-30
2011-01-1966
When switching from regular diesel fuel (sulfur free) to paraffinic hydrotreated vegetable oil (HVO), the changes in fuel chemistry and physical properties will affect emission characteristics in a very positive way. The effects also depend on the technology, after-treatment and sophistication of the engine. To determine the real effects in the case of city buses, 17 typical buses, representing emission classes from Euro II to EEV, were measured with HVO, regular diesel and several blended fuels. The average reduction was 10% for nitrogen oxides (NOx) and 30% for particulate matter (PM). Also some engine tests were performed to demonstrate the potential for additional performance benefits when fuel injection timing was optimized for HVO.
Technical Paper

Bus Fleet Operation on Renewable Paraffinic Diesel Fuel

2011-08-30
2011-01-1965
Helsinki Region Transport, Neste Oil, Proventia Emission Control and VTT Technical Research Centre of Finland carried out a 3.5 year PPP venture “OPTIBIO” to demonstrate the use of paraffinic renewable diesel (hydrotreated vegetable oil HVO) in city buses. The fleet test in Metropolitan Helsinki involving some 300 buses is the largest one in the world to demonstrate this new fuel. The fuels were a 30 % blend of renewable diesel and 100 % renewable diesel. This paper describes the overall set-up of the project, gives an overview of the emission results as well as presents experience from the field.
X