Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

GaAs/Ge Solar Powered Aircraft, 1999

1999-04-06
1999-01-1372
Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration aircraft. Due to the weight, speed, and altitude constraints imposed on such an aircraft, solar array generated electric power can be a viable alternative to air-breathing engines for certain missions. Development of such an aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) has built a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office.
Technical Paper

GaAs/Ge Solar Powered Aircraft, 1998

1998-04-21
981260
Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration aircraft. Due to the weight, speed, and altitude constraints imposed on such an aircraft, solar array generated electric power can be a viable alternative to air-breathing engines for certain missions. Development, of such an aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) has built a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office.
Technical Paper

Design and Optimization of a Self-Deploying Single Axis Tracking PV Array

1992-08-03
929244
This study was performed in order to design a tracking PV array and optimize the design for maximum specific power. The design considerations were minimal deployment time, high reliability and small stowage volume. The array design was self-deployable, from a compact stowage configuration, using a passive pressurized gas deployment mechanism. The array structural components consist of a combination of beams, columns and cables used to deploy and orient a flexible PV blanket. Each structural component of the design was analyzed to determine the size necessary to withstand the various forces it would be subjected to. An optimization was performed to determine the array dimensions and blanket geometry which produce the maximum specific power. The optimization was performed for both lunar and Martian environments with four types of PV blankets (silicon, GaAs/Ge, GaAs CLEFT and amorphous silicon).
X